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Abstract

In this paper we give a formula for the distance from an elementf of the Banach spaceC(�, X)—
whereX is aBanach spaceand� is a compact topological space—to the subsetC(�, S)of all functions
whose range is contained in a given nonempty subsetSof X. This formula is given in terms of the
norm inC(�) of the distance function toSthat is induced byf (namely, of the scalar-valued function
dS
f
which mapst ∈ � into the distance fromf (t) toS), and generalizes the known property that the

distance fromf to C(�, V ) be equal to the norm of dV
f

in C(�) for every vector subspaceV of X
[Buck, Pacific J. Math. 53 (1974) 85–94, Theorem 2; Franchetti and Cheney, Boll. Un. Mat. Ital. B
(5) 18 (1981) 1003–1015, Lemma 2]. Indeed, we prove that the distance fromf to C(�, S) is larger
than or equal to the norm of dS

f
in C(�) for every nonempty subsetSof X, and coincides with it

if S is convex or a certain quotient topological space of� is totally disconnected. Finally, suitable
examples are constructed, showing how for each�, such that the above-mentioned quotient is not
totally disconnected, the setSand the functionf can be chosen so that the distance fromf toC(�, S)
be strictly larger than theC(�)-norm of dS

f
.
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1. Introduction

Throughout this paper, when the scalar field is not specified, we assume that it may be
eitherC or R and denote it byK.
For each normed spaceX , let ‖ ‖X and 0X denote, respectively, the norm and the zero

element ofX . Also, for eachx ∈ X and eachε > 0, letBX (x, ε) stand for the open ball in
X which is centered atx and has a radius equal toε. Finally, if S is a nonempty subset of
X , for each� ∈ X let dX (�,S) denote the distance from� to S in X , namely,

dX (�,S) = inf
{‖�− s‖X : s ∈ S}

.

In a forthcoming paper[Bur], we have provided a formula for the distance fromf ∈
Lp(�, X) (whereX is a Banach space,(X,M, �) is a positivemeasure space and 1�p�∞)
to the setLp(�, S) of all elements ofLp(�, X) whose range is (�-essentially) contained
in a given nonempty subsetSof X. Indeed, in [Bur] we have proved that, ifS is such that
Lp(�, S) �= ∅, then the equivalence class dS

f of scalar-valued functions onX, defined by

dSf (t) = dX
(
f (t), S

)
for �-a.e.t ∈ X, belongs toLp(�) and

dLp(�,X)
(
f,Lp(�, S)

) = ‖dSf ‖Lp(�)

(see[Bur, Proposition 3.8 and Theorem 3.11]; this generalizes the formulae provided in
[LC, 2.10] and in [L, Theorem 5], dealing with the special case in whichS is a vector
subspace ofX).
We are concerned here with the corresponding approximation problem in the Banach

spaceC(�, X), for a compact topological space� and a Banach spaceX.
Given a nonempty subsetS of X, one could wonder whether the distance fromf ∈

C(�, X) to the setC(�, S) of all g ∈ C(�, X)with g(�) ⊂ S is equal to the norm inC(�)
of the function

dSf : � 
 t �−→ dX
(
f (t), S

) ∈ K.

An elementary example (with� = BK(0, 1),X = K andS = K \ {0}) shows that it is not
so. Indeed, if we consider the continuous function� : BK(0, 1) 
 t �−→ t ∈ K, we have

dK\{0}
� (t) = dK(t,K \ {0}) = 0 for all t ∈ BK(0, 1),

and consequently
∥∥dK\{0}

�
∥∥
C(BK(0,1) )

= 0. Furthermore, it is not difficult to verify that for

eachg ∈ C
(
BK(0, 1)

)
satisfying‖g − �‖C(BK(0,1) )

�1, we have 0∈ g
(
BK(0, 1)

)
: this

follows from the intermediate value theorem forK = R; for K = C, by the Brouwer
fixed-point theorem (see for instance[DS, p. 468]) there existsx0 ∈ BK(0, 1) such that
x0 = �(x0)− g(x0) = x0 − g(x0), and consequentlyg(x0) = 0. Since the distance from�
to the constant nonzero functions is easily seen to be equal to 1, we conclude that

dC(BK(0,1) )

(
�, C

(
BK(0, 1),K \ {0})) = 1> 0= ∥∥dK\{0}

�
∥∥
C(BK(0,1) )

.

It is known, however, that the desired equality holds ifSis a vector subspace of the Banach
spaceX. Indeed, this is proved in Lemma 2 of[FC] under the hypothesis that the compact
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topological space� be Hausdorff, and—as remarked in[LC, p. 134, notes on Chapter 2]—
can be derived from the formula provided in [Buc, Theorem 2], in which the distance from
f ∈ C(�, E) (whereE is a normed space and� is a compact topological space) to a given
C(�)-submodule ofC(�, E) is computed. We recall that another result generalizing [FC,
Lemma 2] is [LGC, 2.5], in which the distance fromf ∈ C(K,E) (whereK is a compact
Hausdorff space andE is a normed space) to the subspaceC(K,H)—with respect to the
norm onC(K,E) which is induced by any monotone norm� onC(K)—is proved to be
equal to the�-norm of dHf for every vector subspaceH ofE.We also recall that in [JMN, 2.3]
the distance from anE-valued (whereE is a nonzero normed space) bounded continuous
function f on a topological spaceT to the set of all bounded continuous functions fromT
into E with values inE \ {0E} is proved to coincide with the infimum of all� > 0 for
which the continuous functiont �−→ f (t)/‖f (t)‖E , defined on the set of allt ∈ T such
that‖f (t)‖E��, has a continuous extension fromT into �BE(0E, 1).
In this paper we give sufficient conditions (on the compact topological space� or on the

subsetSof the Banach spaceX) in order that equalitydC(�,X)
(
f,C(�, S)

) = ‖dSf ‖C(�) be
satisfied for everyf ∈ C(�, X).

In Section 2, we gather some preliminaries, which we will need in the continuation of
the paper and which mainly concern the properties of the distance functiondX(., S) and
of dSf , as well as a suitable equivalence relation∼� on a compact topological space�,
such that the quotient topological space�/∼� is Hausdorff. In Section 3 we deal with the
problem of finding the distance inC(�, X) from a functionf to C(�, S). After observing
that the scalar-valued function dSf is continuous in� for each nonempty subsetSof X and
eachf ∈ C(�, X) (Proposition 3.4), in Theorem 3.11 we prove that the distance from
f ∈ C(�, X) to the setC(�, S) is not less than the norm of dSf in C(�); furthermore,
equality holds if the quotient topological space�/∼� is totally disconnected orSis convex.
In Example 3.13 we show that if�/∼� is not totally disconnected and the dimension
of X with respect to the real field is not less than two, a closed connected subsetSof X
and a continuousX-valued functionf on� can be chosen so that the norm of dS

f in C(�)

be strictly less thandC(�,X)
(
f,C(�, S)

)
. Finally, Example 3.14 shows that ifX is a one-

dimensional real normed space, then equalitydC(�,X)
(
f,C(�, S)

) = ‖dSf ‖C(�) holds for

everyf ∈ C(�, X) if and only if�/∼� is totally disconnected orS is convex.

2. Preliminaries

LetX be a Banach space andS be a nonempty subset ofX . It is easily seen that

dX (x,S) = dX
(
x,S)

for all x ∈ X . (2.1)

We also recall that the function

dX (.,S) : X 
 x �−→ dX (x,S) ∈ R

is continuous, as

|dX (x,S)− dX (y,S)|�‖x − y‖X for all x, y ∈ X . (2.2)
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Now let Y be a closed subspace ofX , and let�Y : X −→ X /Y denote the canonical
quotient map. We remark that

dX (x,Y) = ‖�Yx‖X /Y �‖x‖X for everyx ∈ X . (2.3)

LetD be a set andX be a Banach space.
If Sis a nonempty subset ofX, following[Bur, Definition 3.6] we define, for each function

f : D → X, the scalar-valued function dSf : D → K as follows:

dSf (t) = dX
(
f (t), S

)
for all t ∈ D.

Like in [Bur, (3.2)], from (2.2) we obtain

0�dSf (t)�‖f (t)‖X + dX(0X, S) for all t ∈ D. (2.4)

Furthermore, iff andgareX-valued functions, defined onD, from (2.2) it follows that (like
in [Bur, (3.5)])

|dSf (t)− dSg (t)|�‖f (t)− g(t)‖X for all t ∈ D. (2.5)

Finally, for each closed subspaceY of X and each functionf : D → X, from (2.3) we
obtain

dYf (t) = ‖(�Y ◦ f )(t)‖X/Y �‖f (t)‖X for all t ∈ D (2.6)

(which is[Bur, (3.3)]).
If � is a compact topological space andX is a Banach space, letC(�, X) denote the

Banach space of all continuous functions from� intoX. We recall that

‖f ‖C(�,X) = max{‖f (t)‖X : t ∈ �} for everyf ∈ C(�, X).

We writeC(�) for C(�,K).
For each compact topological space�, let ∼� denote the equivalence relation on�

defined by

s ∼� t if f (s) = f (t) for every continuous functionf : � → R.

It is clear that

s, t ∈ �, s ∼� t �⇒ f (s) = f (t)

for every continuous functionf : � → C. (2.7)

We denote byq� the canonical quotient map from� onto the quotient topological space
�/∼�. Also, for each Banach spaceX, letQX

� : C(�/∼�, X) → C(�, X) be the linear
map defined by

QX
�u = u ◦ q� for everyu ∈ C(�/∼�, X).

Notice thatQX
� is an isometry, asq� is onto.

Since� is compact, the quotient topology of�/∼� coincides with the weak topology
induced by the familyC of all functionsu : �/∼�→ R such thatu ◦ q� is continuous on



26 L. Burlando / Journal of Approximation Theory 137 (2005) 22–41

� (namely, see[GJ, 3.3], with the smallest topology on�/∼� with respect to which every
element ofC is continuous). Indeed, the latter topology is Hausdorff (as established in the
proof of [GJ, Theorem 3.9]) and is weaker than or equal to the quotient topology (with
respect to which every element ofC is easily seen to be continuous). Furthermore,�/∼�
is compact under the quotient topology (as� is compact), and it is well known that any
one-to-one continuous map from a compact topological space onto a Hausdorff one is a
homeomorphism. Then the following result can be derived from [GJ, Theorem 3.9] (notice
that Theorem 3.9 of [GJ] deals only with real-valued continuous functions; however, once
the surjectivity ofQR

� is proved, the surjectivity ofQC
� is a straightforward consequence

of it).

Theorem 2.8(see Gillman and Jerison[GJ, Theorem 3.9]).For each compact topologi-
cal space�, the quotient topological space�/∼� is compact and Hausdorff. Furthermore,
QK

� is onto. Hence,the Banach spacesC(�/∼�) andC(�) are isometrically isomorphic.

The following is a straightforward consequence of Urysohn’s lemma.

Proposition 2.9. If � is a Hausdorff compact topological space,for every s,t ∈ �we have

s ∼� t ⇐⇒ s = t.

Then, under the hypothesis of Proposition 2.9,�/∼� can be identified with�.
Let Z+ stand for the set of the strictly positive integers.
For each compact topological space� and each Banach spaceX, let�(�, X) denote the

vector subspace ofC(�, X) which is spanned by the multiples of scalar-valued continuous
functions by elements ofX, namely, the subspace of allf ∈ C(�, X) such that there exist
n ∈ Z+, 	1, . . . ,	n ∈ C(�) andx1, . . . , xn ∈ X satisfyingf (t) = ∑n

k=1	k(t)xk for all
t ∈ �.
The following result will be useful to us in the sequel.

Theorem 2.10(Franchetti and Cheney[FC, Lemma 1]; Light and Cheney [LC, proof of
1.13]; Schmets [S, I.5.3]).Let� be a Hausdorff compact topological space and X be a
Banach space. Then�(�, X) is dense inC(�, X).

3. A distance formula in spaces of vector-valued continuous functions

We begin by extending (in Theorem 3.2 below) the isomorphism result of Theorem 2.8
to vector-valued functions. This extension will enable us to restrict ourselves to the case of
a Hausdorff compact topological space, when necessary.

Lemma 3.1. Let� be a compact topological space,s, t ∈ � and X be a Banach space.
Then

s ∼� t �⇒ f (s) = f (t) for everyf ∈ C(�, X).

If in addition X is nonzero,then the reverse implication also holds.



L. Burlando / Journal of Approximation Theory 137 (2005) 22–41 27

Proof. We begin by remarking that, by taking(2.7) into account, we obtain

s ∼� t ⇐⇒ h(s) = h(t) for every continuous functionf : � → K. (3.1.1)

Now suppose thats ∼� t and consider any continuous functionf : � → X. Also, letX∗
denote the dual space ofX. Then from(3.1.1) it follows that

〈f (s), x∗〉 = 〈f (t), x∗〉 for everyx∗ ∈ X∗,

which givesf (s) = f (t).
Finally, let us assume thatX �= {0X} andf (s) = f (t) for everyf ∈ C(�, X). Fix

x0 ∈ X \ {0X}. For eachh ∈ C(�), we have h x0 ∈ C(�, X). Thenh(s)x0 = h(t)x0,
which, sincex0 �= 0X, gives h(s)= h(t). Hences ∼� t . �

Theorem 3.2. Let� be a compact topological space and X be a Banach space.Then the
linear isometry

QX
� : C(�/∼�, X) 
 u �−→ u ◦ q� ∈ C(�, X)

(introduced in Section2) is onto.Hence,the Banach spacesC(�/∼�, X) andC(�, X) are
isometrically isomorphic.

Proof. Let f ∈ C(�, X). By virtue of Lemma 3.1, there exists a functionuf : �/∼�→ X

such thatuf
(
q�(t)

) = f (t) for every t ∈ �. Now letG be an open subset ofX. Then
f−1(G) is open in�. Furthermore, from Lemma 3.1 it also follows that, for eachs, t ∈ �
satisfyings ∼� t , we have

s ∈ f−1(G) ⇐⇒ t ∈ f−1(G) .

Henceu−1f (G) = q�
(
f−1(G)

)
is open in�/∼�.

We have thus proved thatuf ∈ C(�/∼�, X). Since

QX
� uf = uf ◦ q� = f ,

we obtain the desired result.�

Weremark that the fact thatC(�/∼�, X)andC(�, X)are isometrically isomorphic could
also be derived from Theorem 2.8 by using the injective tensor product (as the completion
of the tensor productC(K) ⊗ X under the injective norm is isometrically isomorphic to
C(K,X) for every compact topological spaceK—see[DF, 4.2.(2)], and the injective norm
satisfies the metric mapping property—see [DF, 4.1.(5)]).
For the reader’s convenience, in Corollary 3.3 below we derive the density of�(�, X)

in C(�, X) for every compact space� (which is claimed to hold, for instance, in the proof
of [DF, 4.2.(2)]) from Theorems 3.2 and 2.10.

Corollary 3.3. Let � be a compact topological space and X be a Banach space. Then
�(�, X) is dense inC(�, X).
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Proof. From Theorems 2.8 and 2.10 it follows that�(�/∼�, X) is dense inC(�/∼�, X).
SinceQX

� is onto byTheorem3.2, we conclude thatQX
�

(
�(�/∼�, X)

)
is dense inC(�, X).

Now, in order to obtain the desired result, it suffices to prove thatQX
�

(
�(�/∼�, X)

) ⊂
�(�, X).
Letu ∈ �(�/∼�, X).Then thereexistn ∈ Z+,
1, . . . ,
n ∈ C(�/∼�)andx1, . . . , xn ∈

X such that

u(�) =
+∞∑
k=1


k(�)xk for all � ∈ �/∼� .

This gives

(QX
�u)(t) = u

(
q�(t)

) = n∑
k=1

(
k ◦ q�)(t)xk for all t ∈ �.

Since
k ◦ q� ∈ C(�) for all k = 1, . . . , n, it follows thatQX
�u ∈ �(�, X), which proves

the desired inclusion and establishes the corollary.�

We remark that, by using Theorem 2.8, it is not difficult to verify that the opposite
inclusion with respect to the one stated in the proof of Corollary 3.3 also holds: namely,

QX
�

(
�(�/∼�, X)

) = �(�, X)

for every compact topological space� and every Banach spaceX.
Now we will state some properties of the scalar-valued function dS

f , for a continuous
function f from a compact topological space into a Banach spaceX and for a nonempty
subsetSof X.
The following is a consequence of the continuity ofdX(., S) (see(2.2)) and of(2.4).

Proposition 3.4. Let � be a compact topological space,X be a Banach space,S be a
nonempty subset of X andf ∈ C(�, X). Then

dSf ∈ C(�) and ‖dSf ‖C(�)�‖f ‖C(�,X) + dX(0X, S).

From Proposition 3.4 and from(2.6), we obtain the following result.

Proposition 3.5. Let� be a compact topological space,X be a Banach space andY be a
closed subspace of X.Then,for eachf ∈ C(�, X), we have

�Y ◦ f ∈ C(�, X/Y ) and dYf ∈ C(�).

Furthermore,

‖�Y ◦ f ‖C(�,X/Y ) = ‖dYf ‖C(�)�‖f ‖C(�,X).

From (2.5) and Proposition 3.4 we obtain the following analogue of[Bur, Lemma 3.9]
for spaces of continuous functions.
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Proposition 3.6. Let� be a compact topological space,X be a Banach space and S be a
nonempty subset of X.Then the map

DS
� : C(�, X) 
 f �−→ dSf ∈ C(�)

is 1-Lipschitz(and is consequently continuous).

Definition 3.7. Let� be a compact topological space andX be a Banach space.
For each nonempty subsetSof X, we set

C(�, S) = {f ∈ C(�, X) : f (t) ∈ S for all t ∈ �}.

For each subsetE of a setD, let 1E denote thecharacteristic functionof E. Namely,

1E : D 
 t �−→
{
1 if t ∈ E

0 if t /∈ E
∈ K.

Notice that 1D(t) = 1 and 1∅(t) = 0 for all t ∈ D.
We remark that, under the hypothesis of Definition 3.7, we haveC(�, S) ⊃ {x 1� : x ∈

S}, and consequentlyC(�, S) is nonempty.

Remark 3.8. Let � be a compact topological space,X be a Banach space andS be a
nonempty subset ofX. We remark that, for eachu ∈ C(�/∼�, X) and for eacht ∈ �,
we have

dSu
(
q�(t)

) = dX

(
u
(
q�(t)

)
, S

)
= dSu◦q�

(t).

Hence

dSu ◦ q� = dSu◦q�
or, equivalently, QK

�dSu = dS
QX

�u

for everyu ∈ C(�/∼�, X). (3.8.1)

SinceQK
� is an isometry, from(3.8.1) it follows that

‖dSu‖C(�/∼�)
= ‖dS

QX
�u
‖
C(�)

= ‖dSu◦q�
‖
C(�)

for everyu ∈ C(�/∼�, X). (3.8.2)

Finally, notice that from(3.8.1)we also obtain

QK
�

(
DS

�/∼�
(u)

) = QK
�dSu = dS

QX
�u
= DS

�

(
QX

�u
)

for eachu ∈ C(�/∼�, X),

namely,

QK
� ◦ DS

�/∼�
= DS

� ◦QX
�.

We call a functiong : D → E (whereD andE are sets)simpleif its rangeg(D) is finite.
If � is a compact topological space andX is a Banach space, letC�(�, X) denote the

vector subspace ofC(�, X) consisting of all theX-valued continuous simple functions on
�. Notice thatC�(�, X) contains all theX-valued constant functions on�, and consists of
them exactly if� is connected.
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Proposition 3.9. Let� be a compact topological space,X be a Banach space and S be a
nonempty subset of X.Then:

(QX
�u)(�) = u(�/∼�) for everyu ∈ C(�/∼�, X); (3.9.1)

C(�, S) = QX
�

(
C(�/∼�, S)

); (3.9.2)

C�(�, X) = QX
�

(
C�(�/∼�, X)

)
. (3.9.3)

Proof. Since

QX
�u = u ◦ q� for everyu ∈ C(�/∼�, X),

we obtain(3.9.1)by the surjectivity ofq�. Now (3.9.1), together with Theorem 3.2, yields
(3.9.2) and(3.9.3). The proof is thus complete.�

Lemma 3.10. Let � be a compact topological space,X be a Banach space and S be a
nonempty subset of X.Then

dC(�/∼�,X)

(
u,C(�/∼�, S)

)= dC(�,X)
(
QX

�u,C(�, S)
)

= dC(�,X)
(
u ◦ q�, C(�, S)

)
for everyu ∈ C(�/∼�, X).

Proof. Let u ∈ C(�/∼�, X). Sinceu ◦ q� = QX
�u andQX

� is a linear isometry, from
(3.9.2) we obtain

dC(�,X)
(
u ◦ q�, C(�, S)

)
= dC(�,X)

(
QX

�u,C(�, S)
)

= dC(�,X)

(
QX

�u,Q
X
�

(
C(�/∼�, S)

))
= inf

{‖QX
�u−QX

�v‖C(�,X) : v ∈ C(�/∼�, S)
}

= inf
{‖u− v‖C(�/∼�,X)

: v ∈ C(�/∼�, S)
} = dC(�/∼�,X)

(
u,C(�/∼�, S)

)
,

which establishes the desired result.�

Theorem 3.11.Let� be a compact topological space,X be a Banach space and S be a
nonempty subset of X.Then:
(3.11.1) dC(�,X)

(
f,C(�, S)

)
�‖dSf ‖C(�) for everyf ∈ C(�, X);

(3.11.2) if, in addition,at least one of the following two conditions is satisfied:
(3.11.2.1)�/∼� is totally disconnected
(3.11.2.2)S is convex,
we have

dC(�,X)
(
f,C(�, S)

) = ‖dSf ‖C(�) for everyf ∈ C(�, X).

Proof. In order to obtain(3.11.1), we proceed in a manner analogous to the proof of the
corresponding inequality in[Bur, Theorem 3.11]. Indeed, givenf ∈ C(�, X), for each
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g ∈ C(�, S) we have

‖f (t)− g(t)‖X�dX
(
f (t), S

) = dSf (t) for all t ∈ �.

This gives

‖f − g‖C(�,X)�‖dSf ‖C(�),

which in turn yields the desired inequality.
Now we prove(3.11.2).
First suppose� to be Hausdorff.
Let f ∈ C(�, X). By virtue of(3.11.1), we have

dC(�,X)
(
f,C(�, S)

)
�‖dSf ‖C(�).

We prove that the opposite inequality also holds if at least one of conditions(3.11.2.1) and
(3.11.2.2) is satisfied.
Fix ε > 0.We prove that, if condition(3.11.2.1)or condition(3.11.2.2) is satisfied, there

existsfε ∈ C(�, S) such that

‖f − fε‖C(�,X)�‖dSf ‖C(�) + ε. (3.11.3)

Sincef is continuous, it follows that, for eacht ∈ �, there exists an open neighborhood
V
(ε)
t of t such that

f (V
(ε)
t ) ⊂ BX

(
f (t), ε/3

)
. (3.11.4)

Furthermore, since� is compact, there exist a positive integernε andt1,ε, . . . , tnε,ε ∈ �
such that

� =
nε⋃
k=1

V
(ε)
tk,ε

. (3.11.5)

We remark that from(2.2) and from(3.11.4) we obtain∣∣dX(
f (t), S

)− dX
(
f (tk,ε), S

)∣∣�‖f (t)− f (tk,ε)‖X < ε/3

for everyk ∈ {1, . . . , nε}, t ∈ V
(ε)
tk,ε

.

Hence

dX
(
f (tk,ε), S

)
< dX

(
f (t), S)+ ε/3

for everyk = 1, . . . , nε andt ∈ V
(ε)
tk,ε

. (3.11.6)

For eachk = 1, . . . , nε, let yk,ε ∈ S be such that

‖f (tk,ε)− yk,ε‖X < dX
(
f (tk,ε), S

)+ ε/3.
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Then from(3.11.4) and(3.11.6)we obtain

‖f (t)− yk,ε‖X
�‖f (t)− f (tk,ε)‖X + ‖f (tk,ε)− yk,ε‖X
< ε/3+ dX

(
f (tk,ε), S

)+ ε/3< dX
(
f (t), S

)+ ε = dSf (t)+ ε

for all k = 1, . . . , nε andt ∈ V
(ε)
tk,ε

. (3.11.7)

If condition (3.11.2.1) is satisfied, then� is totally disconnected by virtue of Proposition
2.9. Since� is Hausdorff, compact and totally disconnected, from[HY, Theorem 2–15] it
follows that every point of� has a neighborhood basis consisting of sets which are open and
closed at the same time. Therefore, it is not restrictive to assume that the setsV

(ε)
t above,

t ∈ �, are closed as well as open. Now set

W1,ε = V
(ε)
t1,ε

and Wk,ε = V
(ε)
tk,ε

∖
k−1⋃
j=1

V
(ε)
tj,ε


 for 1< k�nε.

Notice thatWk,ε is open and closed in� for everyk = 1, . . . , nε. Therefore, 1Wk,ε
∈ C(�)

for everyk = 1, . . . , nε. Let fε ∈ C(�, X) be defined by

fε(t) =
nε∑
k=1

yk,ε 1Wk,ε
(t) for all t ∈ �.

Notice that

Wj,ε ∩Wk,ε = ∅ for all j, k ∈ {1, . . . , nε} satisfyingj �= k. (3.11.8)

Furthermore, by virtue of(3.11.5), we have

nε⋃
k=1

Wk,ε =
nε⋃
k=1

V
(ε)
tk,ε

= �. (3.11.9)

From(3.11.8)and(3.11.9)it follows that

fε(�) ⊂ {y1,ε, . . . , ynε,ε} ⊂ S,

and consequentlyfε ∈ C(�, S). Furthermore, since

Wk,ε ⊂ V
(ε)
tk,ε

for everyk = 1, . . . , nε,

from (3.11.7)and (3.11.8) it follows that, for eachk = 1, . . . , nε and eacht ∈ Wk,ε,
we have

‖f (t)− fε(t)‖X = ‖f (t)− yk,ε‖X < dSf (t)+ ε.

Now, by virtue of(3.11.9), we conclude that

‖f − fε‖C(�,X) =max
{
max{‖f (t)− fε(t)‖X : t ∈ Wk,ε} : k = 1, . . . , nε

}
< ‖dSf ‖C(�) + ε,

which gives(3.11.3).
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Now assume condition(3.11.2.2) to be satisfied. We proceed in a manner similar to the
proof of [S, I.5.3], proceeding toward a finite partition of unity. Indeed, since� is compact
and Hausdorff, andV (ε)

tk,ε
is open in� for all k = 1, . . . , nε, from (3.11.5)and from a

consequence ofUrysohn’s lemma (see [R, 2.13]) it follows that there exist	1,ε, . . . ,	nε,ε
∈

C(�) such that	k,ε(�) ⊂ [0, 1] and the support of	k,ε is contained inV (ε)
tk,ε

for everyk =
1, . . . , nε, and, moreover,

∑nε
k=1	k,ε(t) = 1 for everyt ∈ �. Now let fε ∈ C(�, X) be

defined by

fε(t) =
nε∑
k=1

yk,ε 	k,ε(t) for all t ∈ �.

Sinceyk,ε ∈ S for everyk = 1, . . . , nε andS is convex, it follows thatfε ∈ C(�, S).
From(3.11.7)it follows that, for eacht ∈ �, we have


‖f (t)− yk,ε‖X < dSf (t)+ ε for all k = 1, . . . , nε such thatt ∈ V

(ε)
tk,ε

,

	k,ε(t) = 0 for all k = 1, . . . , nε such thatt /∈ V
(ε)
tk,ε

,

which gives

	k,ε(t) ‖f (t)− yk,ε‖X�	k,ε(t)
(
dSf (t)+ ε

)
for all k = 1, . . . , nε. (3.11.10)

From(3.11.10) it follows that

‖f (t)− fε(t)‖X =
∥∥∥∥∥

nε∑
k=1

(
f (t)− yk,ε

)
	k,ε(t)

∥∥∥∥∥
X

�
nε∑
k=1

	k,ε(t)‖f (t)− yk,ε‖X

�
nε∑
k=1

	k,ε(t)
(
dSf (t)+ ε

) = dSf (t)+ ε for all t ∈ �,

which gives(3.11.3).
Wehavenowproved that, if at least oneof conditions(3.11.2.1)and(3.11.2.2) is satisfied,

for eachε > 0 there existsfε ∈ C(�, S) such that(3.11.3)holds, from which we conclude
that

dC(�,X)
(
f,C(�, S)

)
�‖dSf ‖C(�).

Assertion (3.11.2) is thus established in the special case of a Hausdorff compact topological
space. We now turn to the general case of a (possibly non-Hausdorff) compact topological
space�.
Suppose that at least one of conditions(3.11.2.1) and(3.11.2.2) is satisfied and letf ∈

C(�, X). By virtue of Theorem 3.2, the linear isometryQX
� : C(�/∼�, X)→ C(�, X) is

onto, and consequently there existsvf ∈ C(�/∼�, X) such thatf = QX
�vf . Since�/∼� is

Hausdorff by Theorem 2.8 (which, by Proposition 2.9, implies that the quotient topological
space(�/∼�)

/∼(�/∼�) can be identified with�/∼�), what we have proved above can be
applied to compute the distance fromvf toC(�/∼�, S), yielding

dC(�/∼�,X)

(
vf , C(�/∼�, S)

) = ‖dSvf ‖C(�/∼�)
. (3.11.11)
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SinceQX
� is a linear isometry, from Lemma 3.10,(3.11.11)and(3.8.2) we obtain

dC(�,X)
(
f,C(�, S)

)= dC(�,X)
(
QX

�vf , C(�, S)
) = dC(�/∼�,X)

(
vf , C(�/∼�, S)

)
= ‖dSvf ‖C(�/∼�)

= ‖dS
QX

�vf
‖
C(�)

= ‖dSf ‖C(�),

which establishes(3.11.2) in the general case and concludes the proof.�

We observe that the functionfε satisfying(3.11.3), constructed in the proof of Theorem
3.11 in the case in which� is Hausdorff and condition(3.11.2.1) is satisfied (that is,� is a
totally disconnected Hausdorff compact topological space), is simple as well as continuous.
Since dXf = 0C(�), for S = X (3.11.3)gives

‖f − fε‖C(�,X)�ε.

This enables us to conclude thatC�(�, X) is dense inC(�, X) if � is as above.
Now assume� to be a (possibly non-Hausdorff) compact topological space, such that

�/∼� is totally disconnected. Since�/∼� is compact and Hausdorff (see Theorem 2.8),
from what we have remarked above it follows thatC�(�/∼�, X) is dense inC(�/∼�, X).
Then, by applying(3.9.3)and Theorem 3.2, we obtain the following result.

Proposition 3.12. Let� be a compact topological space,such that�/∼� is totally dis-
connected.ThenC�(�, X) is dense inC(�, X) for every Banach space X.

If �/∼� fails to be totally disconnected andSfails to be convex, the inequality in(3.11.1)
may be strict (even ifSis connected and closed), as Example 3.13 below shows. Indeed, in
this example we will prove that, for each compact topological space� for which�/∼� is
not totally disconnected and for each Banach spaceXwhose dimension with respect to the
real field is not less than two, there exist a nonempty connected closed subsetSof X and
f ∈ C(�, X) such thatdC(�,X)

(
f,C(�, S)

)
> ‖dSf ‖C(�).

Example 3.13.Let� be a compact topological space, such that�/∼� is not totally discon-
nected, and letX be a Banach space (overK) of dimension not less than two with respect
to the real field (that is,X is either a nonzero complex Banach space or a real Banach space
of dimension not less than two).
We prove that there exist a nonempty connected closed subsetSof X andf ∈ C(�, X)

such thatdC(�,X)
(
f,C(�, S)

)
�2 and‖dSf ‖C(�) = 1.

Let C be a connected component of�/∼�, containing more than one point. Since�/∼�
is compact and Hausdorff (see Theorem 2.8), so isC. Hence, by Urysohn’s lemma and by
the connectedness ofC, there exists	0 ∈ C(C) such that	0(C) = [0, 1]. Now from the
Tietze extension theorem (see[HY, 2–31]) it follows that there exists	 ∈ C(�/∼�) such
that	|C = 	0 and	(�/∼�) = [0, 1].

SinceX has a dimension larger than or equal to 2 with respect to the real field, from the
Riesz lemma and from the compactness of the unit sphere in finite-dimensional normed
spaces we conclude that there exist two norm-one vectorse1, e2 ∈ X such that the distance
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from e1 to the real subspace ofX spanned bye2 is equal to 1. Hence

‖�e1+ 
e2‖X� |�| for all �, 
 ∈ R. (3.13.1)

Sincee1 ande2 are linearly independent with respect to the real field, and consequently the
linear (with respect to the real field) mapR2 
 (�, 
) �−→ �e1+
e2 ∈ Y (whereY denotes
the real subspace ofX spanned bye1 ande2) is a homeomorphism, there exists� > 0 such
that

‖�e1+ 
e2‖X��
√

�2+ 
2 for all �, 
 ∈ R. (3.13.2)

We set

S1=
{
se2− e1 : s ∈

[
0,

2

�

]}
, S2 =

{
se2+ e1 : s ∈

[
0,

2

�

]}
,

S3=
{
se1+ 2

�
e2 : s ∈ [−1,1]

}

and

S = S1 ∪ S2 ∪ S3.

Notice thatS is (arcwise) connected, but is not convex. Also,S is clearly closed.
Now letu ∈ C(�/∼�, X) be defined by

u(t) = (
2	(t)− 1

)
e1 for all t ∈ �/∼� .

From(3.13.1)it follows that, for eacht ∈ �/∼� and eachs ∈ [0, 2/�], we have

‖u(t)− (se2− e1)‖X = ‖2	(t)e1− se2‖X�2	(t) = ‖2	(t)e1‖X = ‖u(t)+ e1‖X
and

‖u(t)− (se2+ e1)‖X = ∥∥2(	(t)− 1
)
e1− se2

∥∥
X

� 2
(
1− 	(t)

) = ∥∥2(	(t)− 1
)
e1

∥∥
X
= ‖u(t)− e1‖X.

Since−e1 ∈ S1 ande1 ∈ S2, we conclude that

dX
(
u(t), S1

) = ‖u(t)+ e1‖X = 2	(t)

and

dX
(
u(t), S2

) = ‖u(t)− e1‖X = 2
(
1− 	(t)

)
for everyt ∈ �/∼� . (3.13.3)

From(3.13.2) it follows that, for eacht ∈ �/∼� and eachs ∈ [−1,1], we have∥∥∥∥u(t)−
(
se1+ 2

�
e2

)∥∥∥∥
X

=
∥∥∥∥(
2	(t)− s − 1

)
e1− 2

�
e2

∥∥∥∥
X

� �

√(
2	(t)− s − 1

)2+ 4

�2
��

(
2

�

)
= 2.
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Hence

dX
(
u(t), S3

)
�2 for everyt ∈ �/∼� . (3.13.4)

Since	(t) ∈ [0, 1]—and consequently 2	(t), 2
(
1− 	(t)

) ∈ [0, 2]—for everyt ∈ �/∼�,
from (3.13.3)and(3.13.4) it follows that

dSu(t)= dX
(
u(t), S

) = dX
(
u(t), S1

) ∧ dX
(
u(t), S2

)
= 2

(
	(t) ∧ (

1− 	(t)
)) = {

2	(t) if t ∈ 	−1([0, 1/2]),
2
(
1− 	(t)

)
if t ∈ 	−1([1/2, 1]),

which is less than or equal to 1 for allt ∈ �/∼�. Since	(�/∼�) = [0, 1] 
 1/2, we
conclude that

‖dSu‖C(�/∼�)
= 1. (3.13.5)

Now letv ∈ C(�/∼�, S). Suppose first thatv(C) ∩ S3 �= ∅. Then there existst0 ∈ C such
thatv(t0) ∈ S3. Hence, by virtue of(3.13.4), we have

‖u− v‖C(�/∼�,X)
�‖u(t0)− v(t0)‖X�dX

(
u(t0), S3

)
�2. (3.13.6)

Now supposev(C) ⊂ S1 ∪ S2. SinceS1 andS2 are closed and disjoint,C is connected and
v is continuous, it follows that there existsj ∈ {1,2} such thatv(C) ⊂ Sj . Since

	(C) = 	0(C) = [0, 1],
from (3.13.3)we obtain

‖u− v‖C(�/∼�,X)

= max
{‖u(t)− v(t)‖X : t ∈ �/∼�

}
� max

{‖u(t)− v(t)‖X : t ∈ C}
� max

{
dX

(
u(t), Sj

) : t ∈ C}
= max{2	(t) : t ∈ C} if j = 1

max
{
2
(
1− 	(t)

) : t ∈ C}
if j = 2

}
= 2. (3.13.7)

From(3.13.6)and(3.13.7)we conclude that

‖u− v‖C(�/∼�,X)
�2 for everyv ∈ C(�/∼�, S),

and consequently, by(3.13.5),

dC(�/∼�,X)

(
u,C(�/∼�, S)

)
�2> 1= ‖dSu‖C(�/∼�)

. (3.13.8)

Finally, letf ∈ C(�, X) be defined byf = u ◦ q� = QX
�u. Then Lemma 3.10,(3.13.8)

and(3.8.2) give

dC(�,X)
(
f,C(�, S)

)= dC(�/∼�,X)

(
u,C(�/∼�, S)

)
�2> 1

= ‖dSu‖C(�/∼�)
= ‖dSf ‖C(�),

which establishes the desired result.
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The following example deals with the case that is not considered in Example 3.13,
that is, the case of continuous functions with values in a one-dimensional real Banach
space. Indeed, we will show that, for each compact topological space� for which�/∼�
is not totally disconnected, each real Banach spaceX of dimension 1 and each discon-
nected (or, equivalently, non-convex) subsetSof X, there existsf ∈ C(�, X) such that
dC(�,X)

(
f,C(�, S)

)
> ‖dSf ‖C(�).

Example 3.14.Let � be a compact topological space, such that�/∼� is not totally dis-
connected,X be a real Banach space of dimension 1 andS be a disconnected subset of
X. Without loss of generality, we may assumeX = R (indeed, if we choose a norm-one
elemente of X, the map� : R 
 � �−→ �e ∈ X is an isometric isomorphism, which

implies thatdC(�)
(
g,C(�, A)

) = dC(�,X)

(
� ◦ g,C(

�,�(A)
))

and dAg = d�(A)
�◦g for every

continuous functiong : � → R and every nonempty subsetA of R).
We prove that there existsf ∈ C(�) such thatdC(�)

(
f,C(�, S)

)
> ‖dSf ‖C(�). By

virtue of Theorem 3.2,(3.8.2) and Lemma 3.10, and as in Example 3.13, this is equivalent
to proving that there existsu ∈ C(�/∼�) such that

dC(�/∼�)

(
u,C(�/∼�, S)

)
> ‖dSu‖C(�/∼�)

. (3.14.1)

Let C and	 be the same as in Example 3.13. We recall (see Example 3.13) that

	(C) = 	(�/∼�) = [0, 1]. (3.14.2)

First assumeS to be connected. Then(inf S, supS) ⊂ S. SinceS is disconnected, there
exists�0 ∈ (inf S, supS) such that�0 /∈ S. Notice that�0 is an interior point ofS, and
consequently there existsε > 0 such that[�0 − ε, �0 + ε] ⊂ S. Now letu ∈ C(�/∼�) be
defined by

u(t) = �0 + 2ε	(t)− ε for all t ∈ �/∼� .

For eachv ∈ C(�/∼�, S), v(C) is contained in either(−∞, �0) or (�0,+∞), as �0 /∈ S.
On the other hand, from(3.14.2) it follows that

u(C) = u(�/∼�) = [�0 − ε, �0 + ε]. (3.14.3)

Hence

‖u− v‖C(�/∼�)

� max{|u(t)− v(t)| : t ∈ C} > ε for all v ∈ C(�/∼�, S). (3.14.4)

Since[�0 − ε, �0 + ε] ⊂ S, from (3.14.3) it follows that

dSu(t) = dR

(
u(t), S

) = 0 for all t ∈ �/∼�,

which, together with(3.14.4), gives

dC(�/∼�)

(
u,C(�/∼�, S)

)
�ε > 0= ‖dSu‖C(�/∼�)

,

thus establishing(3.14.1).
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Now suppose thatS is not connected. Then there existx, y ∈ S such thatx < y and
(x, y) has a nonempty intersection withR \ S. Hence, the open setR \ S has at least one
component which is bounded (being contained in(x, y)). Consequently, there exista,b ∈ S

such thata < b and(a, b) ⊂ R \ S. Now letu ∈ C(�/∼�) be defined by

u(t) = a + 	(t)(b − a) for all t ∈ �/∼� .

By virtue of (3.14.2), there existst0 ∈ �/∼� such that	(t0) = 1/2 (and consequently
u(t0) = (a + b)/2). Sincea, b ∈ S and(a, b) ∩ S = ∅, from (3.14.2) and(2.1)we derive
that

dSu(t)= dR

(
u(t), S

) = dR

(
u(t), S

)
=

{
u(t)− a = 	(t)(b − a) if t ∈ 	−1([0, 1/2])
b − u(t) = (

1− 	(t)
)
(b − a) if t ∈ 	−1([1/2, 1]) � b − a

2

= dR

(
u(t0), S) = dR

(
u(t0), S) = dSu(t0) for all t ∈ �/∼�,

which gives

‖dSu‖C(�/∼�)
= dSu(t0) =

b − a

2
. (3.14.5)

Now let v ∈ C(�/∼�, S). Since(a, b) ∩ S = ∅, it follows thatv(C) is contained in either
(−∞, a] or [b,+∞). On the other hand, from(3.14.2) it follows thatu(C) = [a, b], and
consequently

‖u− v‖C(�/∼�)
� max{|u(t)− v(t)| : t ∈ C}�b − a. (3.14.6)

Now (3.14.5) and(3.14.6) give

dC(�/∼�)

(
u,C(�/∼�, S)

)
�b − a >

b − a

2
= ‖dSu‖C(�/∼�)

,

which in turn yields(3.14.1) and completes the example.

The following example shows that Proposition 3.12 does not hold if the hypothesis that
�/∼� be totally disconnected is dropped. Indeed, we will show that, if�/∼� is not totally
disconnected andX is nonzero, thenC�(�, X) is not dense inC(�, X).

Example 3.15.Let � be a compact topological space, such that�/∼� is not totally dis-
connected, and letX be a nonzero Banach space.
We prove thatC�(�, X) is not dense inC(�, X), which, by virtue of(3.9.3) and of

Theorem 3.2, is equivalent to proving thatC�(�/∼�, X) is not dense inC(�/∼�, X).
Let	 andC be the same as in Examples 3.13 and 3.14. Since	(C) = [0, 1] (see Example

3.13), there existt0, t1 ∈ C such that	(t0) = 0 and	(t1) = 1. Furthermore, letx0 be a
norm-one element ofX, andx∗0 be a norm-one bounded linear functional onX, satisfying
〈x0, x∗0〉 = 1.

Now letu ∈ C(�/∼�, X) be defined by

u(t) = 	(t)x0 for all t ∈ �/∼� .
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For eachv ∈ C�(�/∼�, X), v(C) is a connected subset ofv(�/∼�), which is finite. Hence,
v(C) consists of a single point, that is, there existsyv ∈ X such that

v(t) = yv for all t ∈ C.
Then

‖u− v‖C(�/∼�,X)

� max{‖u(t)− v(t)‖X : t ∈ C} = max{‖	(t)x0 − yv‖X : t ∈ C}
� max{ |〈	(t)x0 − yv, x

∗
0〉| : t ∈ C} = max{ |	(t)− 〈yv, x∗0〉| : t ∈ C}

� max{ |	(t0)− 〈yv, x∗0〉| , |	(t1)− 〈yv, x∗0〉| }
= max{ |〈yv, x∗0〉| , | 1− 〈yv, x∗0〉| }�

|〈yv, x∗0〉| + |1− 〈yv, x∗0〉|
2

� 1

2
.

HenceC�(�/∼�, X) is not dense inC(�/∼�, X), and the desired result is established.

Finally, we will derive analogues of[Bur, Corollaries 3.12 and 3.13] for Banach spaces
of continuous functions, as a consequence of Theorem 3.11.
As a preliminary, we observe that ifY is a closed subspace of a Banach spaceX and� is

a compact topological space, thenC(�, Y ), being a Banach space, is a closed subspace of
C(�, X).

Corollary 3.16. Let X be a Banach space,Y be a closed subspace of X and� be a compact
topological space.Then

dC(�,X)
(
f,C(�, Y )

) = ‖�C(�,Y )f ‖C(�,X)/C(�,Y ) = ‖�Y ◦ f ‖C(�,X/Y )
for everyf ∈ C(�, X).

Proof. SinceY is convex, then(3.11.2) applies, giving

dC(�,X)
(
f,C(�, Y )

) = ‖dYf ‖C(�) for everyf ∈ C(�, X).

Now the desired result follows from Proposition 3.5 and from(2.3). �

Notice that Corollary 3.16 is also clearly a consequence of[Buc, Theorem 2] or—for a
Hausdorff space�—of [FC, Lemma 2].
The following result can be proved proceeding as in [Bur, Corollary 3.13] (by replacing

an appeal to density of the countably valued elements ofLp(�, X)with an appeal to density
of �(�, X) in C(�, X)). For the reader’s convenience, we will provide an explicit proof
for it.

Corollary 3.17. Let X be a Banach space,Y be a closed subspace of X and� be a compact
topological space.Then:
(3.17.1) the linear map

��
Y : C(�, X) 
 f �−→ �Y ◦ f ∈ C(�, X/Y )

is bounded and onto;
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(3.17.2) the kernel of��
Y coincides withC(�, Y );

(3.17.3) the linear map

��
Y : C(�, X)/C(�, Y ) 
 f + C(�, Y ) �−→ �Y ◦ f ∈ C(�, X/Y )

(induced by��
Y via the first homomorphism theorem)is isometric and onto;hence,

the Banach spacesC(�, X)/C(�, Y ) andC(�, X/Y ) are isometrically isomor-
phic.

Proof. From Proposition 3.5 we derive that��
Y is well defined and bounded. Furthermore,

(3.17.2) follows from Corollary 3.16. Then��
Y is well defined and

��
Y

(
C(�, X)/C(�, Y )

) = ��
Y

(
C(�, X)

)
. (3.17.4)

From Corollary 3.16 it also follows that��
Y is an isometry, and consequently has closed

range. Then��
Y has closed range by(3.17.4). Now we prove that��

Y is onto.
Let u ∈ �(�, X/Y ). Then there existn ∈ Z+, 	1, . . . ,	n ∈ C(�) and�1, . . . , �n ∈

X/Y such that

u(t) =
n∑

k=1
	k(t) �k for all t ∈ �.

For eachk = 1, . . . , n, let xk ∈ X be such that�Y xk = �k. Now letf : � → X be the
continuous function defined by

f (t) =
n∑

k=1
	k(t)xk for all t ∈ �.

Then

(��
Y f )(t) = (�Y ◦ f )(t) = �Y f (t) =

n∑
k=1

	k(t)�Y xk =
n∑

k=1
	k(t)�k = u(t)

for all t ∈ �,

which gives��
Y f = u.

We have thus proved that

��
Y

(
C(�, X)

) ⊃ �(�, X/Y ). (3.17.5)

Since��
Y

(
C(�, X)

)
is closed, and�(�, X/Y ) is dense inC(�, X/Y ) by Theorem 2.10,

from (3.17.5)we conclude that��
Y is onto, which completes the proof of(3.17.1). Now

from (3.17.4) it follows that��
Y is also onto, which completes the proof of(3.17.3)and

establishes the corollary.�

We remark that Corollary 3.17 (and consequently Corollary 3.16) can also be obtained
via an injective tensor product: indeed, it can, for instance, be derived from [DF, 4.2.(2),
4.4 (applied to the metric surjection�Y ) and 2.7, Property (4)].
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Corollary 3.18. Let� be a compact topological space,X be a Banach space and S be a
nonempty subset of X.If at least one of conditions(3.11.2.1) and (3.11.2.2) is satisfied,
then:
(3.18.1) dC(�,X)

(
f,C(�, S)

) = dC(�,X)
(
f,C(�, S)

)
for everyf ∈ C(�, X);

(3.18.2) C(�, S) = C(�, S).

Proof. Since dSf = dSf by (2.1) (andS is convex ifS is convex),(3.18.1) follows from

Theorem 3.11. SinceC(�, S ) is clearly a closed subset ofC(�, X), (3.18.1)in turn yields
(3.18.2). �

Notice that if none of conditions(3.11.2.1) and(3.11.2.2) is satisfied, then both the in-
equalitydC(�,X)

(
f,C(�, S )

)
�dC(�,X)

(
f,C(�, S)

)
and the inclusionC(�, S) ⊂ C(�, S )

may be strict, as the elementary example mentioned in the Introduction shows.
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