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Abstract

In this paper we give a formula for the distance from an elerhefithe Banach spadg(Q, X)—
whereXis a Banach space aftis a compact topological space—to the suldd@?, S) of all functions
whose range is contained in a given nonempty suBsétX. This formula is given in terms of the
norm inC (Q) of the distance function tS8that is induced by (namely, of the scalar-valued function
d? which maps € Q into the distance fronf (¢) to S), and generalizes the known property that the
distance fronf to C (2, V) be equal to the norm off‘ﬁ in C(Q) for every vector subspaceé of X
[Buck, Pacific J. Math. 53 (1974) 85-94, Theorem 2; Franchetti and Cheney, Boll. Un. Mat. Ital. B
(5) 18 (1981) 1003-1015, Lemma 2]. Indeed, we prove that the distancd fmay 2, S) is larger
than or equal to the norm of‘;din C(Q) for every nonempty subs&of X, and coincides with it
if Sis convex or a certain quotient topological spaceds totally disconnected. Finally, suitable
examples are constructed, showing how for e@clsuch that the above-mentioned quotient is not
totally disconnected, the s8tand the functiori can be chosen so that the distance ffdmC (Q, S)
be strictly larger than thé€' (2)-norm of dJS(
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1. Introduction

Throughout this paper, when the scalar field is not specified, we assume that it may be
eitherC or R and denote it byk.

For each normed spack, let || || and Qy denote, respectively, the norm and the zero
element ofY. Also, for eachx € X and eaclz > 0, let By (x, ¢) stand for the open ball in
X which is centered at and has a radius equal ¢oFinally, if S is a nonempty subset of
X, for each! € X letdy({, S) denote the distance frofito S in X', namely,

dy((,S) = inf{||C—s||X 15 € S}.

In a forthcoming papefBur], we have provided a formula for the distance frgine
L, (u, X) (whereXis a Banach space¥, 9, p) is a positive measure space and 4 < oo)
to the setL ,(u, S) of all elements ofL ,(u, X) whose range is (u-essentially) contained
in a given nonempty subs8tof X. Indeed, in [Bur] we have proved that,Sfis such that
L,(u, S) # ¥, then the equivalence clas§ of scalar-valued functions o¥, defined by

df»(t) =dx(f (1), S) for y-a.e.r € X, belongs taL , (1) and

dL,ux)(f: Lp(u. $)) = [ld}|

(see[Bur, Proposition 3.8 and Theorem 3.11]; this generalizes the formulae provided in
[LC, 2.10] and in [L, Theorem 5], dealing with the special case in wisdb a vector
subspace oX).

We are concerned here with the corresponding approximation problem in the Banach
spaceC (2, X), for a compact topological spa€kand a Banach spacé

Given a nonempty subs&of X, one could wonder whether the distance frgme
C(Q, X)totheseC(Q, S) ofall g € C(Q, X) with g(Q) C S is equal to the norm i’ (£2)
of the function

L,

d} 1 Q31— dx(f(1).S) € K.

An elementary example (witf? = B (0, 1), X = K andS = K\ {0}) shows that it is not
so. Indeed, if we consider the continuous functiomB (0, 1) > r — ¢ € K, we have

ANy = g1, K\ {0) = 0 forallt € B (0, 1),

and consequentlﬂ/dfﬁ\m} HC(W) = 0. Furthermore, it is not difficult to verify that for
eachg € C(Bk(0, 1)) satisfying|lg — e Bom) <1 we have O g(Bk(0,1)): this
follows from the intermediate value theorem fsr = R; for K = C, by the Brouwer
fixed-point theorem (see for instanfi@S, p. 468]) there existsg € By (0, 1) such that
x0 = 1(x0) — g(x0) = xo0 — g(x0), and consequently(xg) = 0. Since the distance from
to the constant nonzero functions is easily seen to be equal to 1, we conclude that

decrom (1 C(Bx@ D, K\ (0))) =1 0= [d" ¥ . 555 -

Itis known, however, that the desired equality holdSig a vector subspace of the Banach
spaceX. Indeed, this is proved in Lemma 2 [6fC] under the hypothesis that the compact
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topological spac® be Hausdorff, and—as remarkediC, p. 134, notes on Chapter 2]—
can be derived from the formula provided in [Buc, Theorem 2], in which the distance from
f € C(Q, E) (whereE is a normed space arglis a compact topological space) to a given
C(£)-submodule oC (£, E) is computed. We recall that another result generalizing [FC,
Lemma 2] is [LGC, 2.5], in which the distance frofne C(K, E) (whereK is a compact
Hausdorff space anél is a normed space) to the subspaue&, H)—with respect to the
norm onC (K, E) which is induced by any monotone nomron C(K)—is proved to be
equal to the:-norm of o for every vector subspa¢eof E. We also recall thatin [JMN, 2.3]
the distance from a&-valued (wherd is a nonzero normed space) bounded continuous
functionf on a topological spac€ to the set of all bounded continuous functions frém
into E with values inE \ {Og} is proved to coincide with the infimum of afl > 0 for
which the continuous function— f(t)/| f ()|, defined on the set of all e T such
that|| £ (¢)|| g = J, has a continuous extension franinto ¢ Bg (Og, 1).

In this paper we give sufficient conditions (on the compact topological pacen the
subsesof the Banach spac¥) in order that equalityc (o x)(f, C(2, $)) = ”df””cm) be
satisfied for everyf € C(Q, X).

In Section 2, we gather some preliminaries, which we will need in the continuation of
the paper and which mainly concern the properties of the distance funbtionS) and
of d5, as well as a suitable equivalence relatiep on a compact topological spack
such that the quotient topological spaeg~q is Hausdorff. In Section 3 we deal with the
problem of finding the distance ifi(Q, X) from a functionf to C(Q, S). After observing
that the scalar-valued function.ds continuous in2 for each nonempty subsgof X and
eachf e C(Q, X) (Proposition 3.4), in Theorem 3.11 we prove that the distance from
f € C(Q, X) to the setC(£, S) is not less than the norm ofjspdn C(Q); furthermore,
equality holds if the quotient topological spaeg~, is totally disconnected @is convex.

In Example 3.13 we show that 2/ ~¢ is not totally disconnected and the dimension
of X with respect to the real field is not less than two, a closed connected shibbat
and a continuouX-valued functiorf on Q can be chosen so that the norm c§f id C(Q)

be strictly less thadc o x)(f, C(2, $)). Finally, Example 3.14 shows thatXfis a one-

dimensional real normed space, then equalityy x,) (f, C(Q, S)) = ”df””ag) holds for

every f € C(Q, X) if and only if @/~ is totally disconnected d8is convex.

2. Preliminaries

Let X be a Banach space adbe a nonempty subset 4f. It is easily seen that
dy(x,S) :dX(x,g) forallx e X. (2.1)
We also recall that the function
dy(,8): X 2x+—dy(x,8) R
is continuous, as

ldx(x,8) —dx(y, S)I<lx —ylly forallx,yed. (2.2)



L. Burlando / Journal of Approximation Theory 137 (2005) 22—-41 25
Now let ) be a closed subspace &f, and letry : X — X'/ denote the canonical
quotient map. We remark that
dx(x,Y) = myxll x/y <llxllx for everyx € X. (2.3)

Let D be a set an& be a Banach space.
If Sis a nonempty subset &f following[Bur, Definition 3.6] we define, for each function
f : D — X, the scalar-valued function}d D — K as follows:

d} (1) =dx(f(),S) forallseD.
Like in [Bur, (3.2)], from (2.2) we obtain
0< d}(;) <|IIf@)lly +dx(0x,S) forallreD. (2.4)

Furthermore, if andg areX-valued functions, defined dp, from (2.2) it follows that (like
in [Bur, (3.5)])

|d}(0) — d () <I1f (1) — gy forallz eD. (2.5)

Finally, for each closed subspa®eof X and each functiorf : D — X, from (2.3) we
obtain

di () = (v o HONyyy <If Dl forallzeD (2.6)

(which is[Bur, (3.3)]).
If Qis a compact topological space akds a Banach space, I€t(Q, X) denote the
Banach space of all continuous functions frénto X. We recall that

I flc.xy =maxXllf @)y :t € Q) foreveryf e C(Q X).

We write C (Q) for C(Q, K).
For each compact topological spa@e let ~, denote the equivalence relation ¢h
defined by

s ~qt if f(s) = f(r) for every continuous functiorf : Q — R.
It is clear that

s, teQ, s~ot = f(s)=f()
for every continuous functiofi: Q — C. (2.7)
We denote by, the canonical quotient map frof onto the quotient topological space

Q/~q. Also, for each Banach spacg let Qé 1 C(Q/~q, X) — C(Q, X) be the linear
map defined by

Qfu=uogq foreveryu e C(Q/~g, X).

Notice thath’g is an isometry, agg is onto.
SinceQ is compact, the quotient topology ©f/ ~¢ coincides with the weak topology
induced by the family& of all functionsu : Q/~o— R such that: o g is continuous on
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Q (namely, se¢GJ, 3.3], with the smallest topology d&/~¢ with respect to which every
element ofC is continuous). Indeed, the latter topology is Hausdorff (as established in the
proof of [GJ, Theorem 3.9]) and is weaker than or equal to the quotient topology (with
respect to which every element 6fis easily seen to be continuous). Furthermaé?g;-q

is compact under the quotient topology @ss compact), and it is well known that any
one-to-one continuous map from a compact topological space onto a Hausdorff one is a
homeomorphism. Then the following result can be derived from [GJ, Theorem 3.9] (notice
that Theorem 3.9 of [GJ] deals only with real-valued continuous functions; however, once
the surjectivity ong is proved, the surjectivity oQg is a straightforward consequence

of it).

Theorem 2.8(see Gillman and JerisojcJ, Theorem 3.9]).For each compact topologi-
cal space®, the quotient topological spade/~ is compact and Hausdorff. Furthermore,
Qg is onto. Hencethe Banach spaces(Q2/~q) and C(Q2) are isometrically isomorphic.

The following is a straightforward consequence of Urysohn’s lemma.

Proposition 2.9. If Qis a Hausdorff compact topological spader, every st € Q2 we have

s~ <— S§s=t1.

Then, under the hypothesis of Proposition 229;-o can be identified with.

Let Z.. stand for the set of the strictly positive integers.

For each compact topological spaeand each Banach spaXelet[1(Q2, X) denote the
vector subspace @ (2, X) which is spanned by the multiples of scalar-valued continuous
functions by elements of, namely, the subspace of glle C (£, X) such that there exist
neZy, ¢, ....,0, € C(Q) andxy, ..., x, € X satisfyingf(t) = > ;_1 ¢ (t)x; for all
t e

The following result will be useful to us in the sequel.

Theorem 2.10(Franchetti and ChenefFC, Lemma 1]; Light and Cheney [LC, proof of
1.13]; Schmets [S, 1.5.3])Let Q be a Hausdorff compact topological space and X be a
Banach space. Theri (22, X) is dense inC (2, X).

3. A distance formula in spaces of vector-valued continuous functions

We begin by extending (in Theorem 3.2 below) the isomorphism result of Theorem 2.8
to vector-valued functions. This extension will enable us to restrict ourselves to the case of
a Hausdorff compact topological space, when necessary.

Lemma 3.1. Let Q be a compact topological spacg,r € 2 and X be a Banach space.
Then

s~ot = f(s)=f@) foreveryf e C(Q,X).

If in addition X is nonzerathen the reverse implication also holds.
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Proof. We begin by remarking that, by takir{@.7) into account, we obtain
s~ot <= h(s)=h() foreverycontinuous functioff : @ — K. (3.1.1)

Now suppose that ~g t and consider any continuous functign: 2 — X. Also, let X*
denote the dual space ¥f Then from(3.1.1)it follows that

(f(s), x™) = (f(r), x*) foreveryx* e X*,

which givesf (s) = f(¢).

Finally, let us assume tha& # {Ox} and f(s) = f(¢) for every f € C(Q, X). Fix
xo € X \ {Ox}. For eachh € C(Q), we have hy € C(Q, X). Thenh(s)xo = h(t)xo,
which, sincexg # Oy, gives h(s)= h(t). Hences ~o t. O

Theorem 3.2. Let Q be a compact topological space and X be a Banach spduwen the
linear isometry

08 : C(Q)~q,X) 3 ur— uogg e C(Q,X)

(introduced in Sectiof) is onto.Hence the Banach spaces(Q/~q, X) andC (2, X) are
isometrically isomorphic.

Proof. Let f € C(Q, X). By virtue of Lemma 3.1, there exists a functiop : Q/~o— X
such thatuf(qg(t)) = f(¢) for everyt € Q. Now let G be an open subset of. Then
f~X(G) is open inQ. Furthermore, from Lemma 3.1 it also follows that, for eache Q
satisfyings ~q t, we have

se fFYG) = 1efYG).

Henceujtl(c) = q0(f~X(G)) is open inQ/~q.
We have thus proved that; € C(2/~q, X). Since

Qyur=uroqo=1r,

we obtain the desired result]

We remark that the factthat(Q/~q, X) andC (Q, X) are isometrically isomorphic could
also be derived from Theorem 2.8 by using the injective tensor product (as the completion
of the tensor produaf (K) ® X under the injective norm is isometrically isomorphic to
C(K, X) for every compact topological spake—see[DF, 4.2.(2)], and the injective norm
satisfies the metric mapping property—see [DF, 4.1.(5)]).

For the reader’s convenience, in Corollary 3.3 below we derive the densiify®f X)
in C(Q, X) for every compact spade (which is claimed to hold, for instance, in the proof
of [DF, 4.2.(2)]) from Theorems 3.2 and 2.10.

Corollary 3.3. Let Q be a compact topological space and X be a Banach spHoen
I1(Q, X) isdense iC(Q, X).
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Proof. From Theorems 2.8 and 2.10 it follows tHatQ2/~q, X) is dense inC(Q/~q, X).
SinceQ} is onto by Theorem 3.2, we conclude ti@g} (11(2/~¢q. X)) is dense irC (2, X).

Now, in order to obtain the desired result, it suffices to prove 9¥{I1(2/~q. X)) C
(Q, X).

Letu € I1(2/~q, X). Thenthereexist € Z4, Y4, ..., ¥, € C(Q/~g)andxy, ..., x, €
X such that

+00
u(t) = Z Yi(Dx forallt e Q/~q .
k=1
This gives
(QFw)(1) =u(ga®)) =Y (hogqa))x; forallt e Q.
k=1

Sincey, oqo € C(Q) forallk =1,...,n,itfollows thathu € I1(R, X), which proves
the desired inclusion and establishes the corollafy.

We remark that, by using Theorem 2.8, it is not difficult to verify that the opposite
inclusion with respect to the one stated in the proof of Corollary 3.3 also holds: namely,

05 (I1(Q/~q. X)) = 1(Q, X)

for every compact topological spafeand every Banach spae

Now we will state some properties of the scalar-valued functionfdr a continuous
functionf from a compact topological space into a Banach spéead for a nonempty
subsetSof X.

The following is a consequence of the continuitydgf(., S) (see(2.2)) and of(2.4).

Proposition 3.4. Let Q be a compact topological spac¥, be a Banach spac&§ be a
nonempty subset of X anfde C (£, X). Then

df € C(@ and [d}l. o <Iflc@x) +dxOx.S).
From Proposition 3.4 and froif2.6), we obtain the following result.

Proposition 3.5. Let Q be a compact topological space,be a Banach space artbe a
closed subspace of Xhen,for eachf € C(£2, X), we have

nyo f€C(Q X/Y) and df e C(Q).
Furthermore,

Iy o fllc@x/vy = Id¢ g <1 fllc@x)-

From (2.5) and Proposition 3.4 we obtain the following analogué¢Br, Lemma 3.9]
for spaces of continuous functions.
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Proposition 3.6. Let Q be a compact topological spacé,be a Banach space and S be a
nonempty subset of Xhen the map

Dy : C(R.X) > f+— d} € C(Q)
is 1-Lipschitz(and is consequently continuous).

Definition 3.7. Let Q be a compact topological space axte a Banach space.
For each nonempty subsebf X, we set

C,8={feC(Q,X): f(t) e Sforallt € Q}.

For each subséi of a setD, let 1z denote theharacteristic functiorof E. Namely,

1 ifreE
lE.D9t|—>{O if1 ¢ E e K.
Notice that Ib(r) = 1 and §(¢z) = O forallr € D.
We remark that, under the hypothesis of Definition 3.7, we lta¢@, S) D {x 1o : x €
S}, and consequentlg (€, S) is nonempty.

Remark 3.8. Let Q be a compact topological spacé,be a Banach space a&lbe a
nonempty subset ok. We remark that, for eachh € C(Q/~q, X) and for eachr € Q,
we have

6 (20(0) = dx (1(g0®). ) = 6., ().

Hence

S
qu

for everyu € C(Q/~q, X). (3.8.1)

df 0go=d;,,, or equivalenty QgdS =d

Sincng is an isometry, fron(3.8.1)it follows that

||d,§||C(Q/NQ)=||dzgu||c(g>=||d50q9||c(g) for everyu € C(Q/~q, X). (3.8.2)

Finally, notice that from(3.8.1) we also obtain

05(Dg,, () = 05dS = ngu =D5(08u) for eachu € C(Q/~q, X),
namely,

08 o Dg/m =D} o0 0.

We call a functiorg : D — £ (whereD and¢ are setsgimpleif its rangeg (D) is finite.

If Qis a compact topological space aKkds a Banach space, |€62(Q, X) denote the
vector subspace @ (2, X) consisting of all theX-valued continuous simple functions on
Q. Notice thatCX (£, X) contains all theX-valued constant functions @i and consists of
them exactly if2 is connected.
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Proposition 3.9. Let Q be a compact topological space,be a Banach space and S be a
nonempty subset of Xhen:

(Qau)(Q) = u(Q/~q) foreveryu € C(Q/~q, X); (3.9.1)

C(Q,8) = 05(C(Q/~q, 9)); (3.9.2)

CI(Q, X) = 03 (CX(Q/~q, X)). (3.9.3)
Proof. Since

Oju=uogq foreveryu e C(Q/~, X),
we obtain(3.9.1) by the surjectivity ofjo. Now (3.9.1), together with Theorem 3.2, yields
(3.9.2) and(3.9.3). The proof is thus complete ]

Lemma 3.10. Let Q be a compact topological spack,be a Banach space and S be a
nonempty subset of Xhen

de@/~g.x) (1, C(R/~q, $)) = dcia.x)(Qgu, C(2, 9))
=dc@,x)(u0q0.C(Q,5))
for everyu € C(Q/~q, X).
Proof. Letu € C(Q/~q, X). Sinceu o qo = Q5u and Q3 is a linear isometry, from
(3.9.2 we obtain
de@,x)(uoqo. C(Q,5))
= dco.x)(Qgu, C(,5))
= deqo.x (08, 0F(C(@/~0. 9)))
inf{l| Q&u — qunc(gyx) tv e CQ/~. 5}
=inf{llu — vllc@jmg.x) v € C(Q/~q. S} = dc(@/g.x) (1. C(R)~. 5)).
which establishes the desired result]

Theorem 3.11. Let Q be a compact topological spack¥,be a Banach space and S be a
nonempty subset of Xhen:
(311.1) deca.x) (f. C(2. 9)) = 1Id} ., for every f € C(Q, X);
(3.11.2) if, in addition, at least one of the following two conditions is satisfied:
(3.11.2.1) Q/~q is totally disconnected
(3.11.2.2) S is convex,
we have

de@.x)(f.C(2.9)) = |}l o, Toreveryf e C(2.X).

Proof. In order to obtain3.11.1), we proceed in a manner analogous to the proof of the
corresponding inequality ifBur, Theorem 3.11]. Indeed, givefi € C(Q, X), for each
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g € C(Q,S)we have
If @) —glx=dx(f(),S) =d}@) forallieQ.
This gives
If = gllewx =197l q)-

which in turn yields the desired inequality.
Now we prove(3.11.2.
First suppos&? to be Hausdorff.
Let f € C(Q, X). By virtue of (3.11.1), we have

de@x) (f. €2, 9) 2 11d} - -

We prove that the opposite inequality also holds if at least one of condiiBoh%.21) and
(3.11.22) is satisfied.

Fix e > 0. We prove that, if conditio3.11.21) or condition(3.11.22) is satisfied, there
exists f; € C(Q, S) such that

If = fellc@x <17l g +e. (3.11.3)

Sincef is continuous, it follows that, for eache Q, there exists an open neighborhood
v/© of t such that

FVEY c Bx(f(), ¢/3). (3.11.4)
Furthermore, sinc® is compact, there exist a positive integerandzsy ¢, ..., t,, . € Q
such that

ng

o= Jv. (3.11.5)

k=1

We remark that frong2.2) and from(3.11.4 we obtain
|dx (f (). S) —dx(f (), S)| <N f@) = fltee)ly <e/3
foreveryk e {1,...,n.), t € V,ffg
Hence

dx (f(tre), S) < dx(f (), S) +¢/3
for everyk = 1,...,n, ands € V,*). (3.11.6)

k.e

Foreachk =1,..., n, lety,, € S be such that

I (tre) = yiellx < dx(f e, S) +e/3.



32 L. Burlando / Journal of Approximation Theory 137 (2005) 22-41

Then from(3.11.4 and(3.11.6)we obtain

lf@) — yk,s”x
SIf@ = fle)lly + 11 (re) — yielly
<¢&/34+dx(f(tre). S)+¢e/3<dx(f1).S)+e= dfe(l) +e
forallk =1.....n, andr € v, (3.11.7)
If condition (3.11.21) is satisfied, them? is totally disconnected by virtue of Proposition
2.9. Since? is Hausdorff, compact and totally disconnected, fijdtl, Theorem 2-15] it
follows that every point of2 has a neighborhood basis consisting of sets which are open and

closed at the same time. Therefore, it is not restrictive to assume that the(‘gem)ove,
t € Q, are closed as well as open. Now set

k—1
Wi — v and Wk,gzvtii)\ v fort<k<n.
j=1

Notice thatW; . is open and closed i€ for everyk =1, ..., n.. Therefore, ¥, , € C(Q)
foreveryk =1, ...,n,. Let f, € C(L, X) be defined by

Ng
Jfe@) = Z Vi,e 1w, (1) forallr e Q.

k=1
Notice that

WieNWire=0 forall j, k e{1,...,n.} satisfyingj # k. (3.11.8)
Furthermore, by virtue 0f3.11.5), we have

Ne Ne

U Wee = v =2 (3.11.9)

k=1 k=1

From(3.11.8)and(3.11.9)it follows that

fS(Q) C {yl,&‘v "'1yng,8} C Ss

and consequently, € C(Q, S). Furthermore, since
Wi.e C V,ffz foreveryk =1,..., n,

from (3.11.7)and (3.11.8) it follows that, for eachk = 1,...,n. and eachr € Wi,
we have

LF @) = felx = 1) = yeelly < d30) +e.
Now, by virtue of(3.11.9), we conclude that

If = fellc.xy =max{max|| f(t) — felly :t € W) :k=1,...,n}

N
<114}l o g, + e

which gives(3.11.3).
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Now assume conditio(B.11.22) to be satisfied. We proceed in a manner similar to the
proof of [S, 1.5.3], proceeding toward a finite partition of unity. Indeed, si2de compact
and Hausdorff, and/tfi) is open inQ for all k = 1,...,n, from (3.11.5)and from a
consequence of Urysohn’s lemma (see [R, 2.13]) it follows that there@xist . . , ¢, . €
C(Q) suchthatp, () C [0, 1] and the support op, . is contained iri[/,,((‘i) for everyk =
1,...,n., and, moreoverZZ;1 ¢y (t) = 1foreveryt € Q. Now let f; € C(Q, X) be
defined by

ne
0= yiepr () forallre.
k=1

Sinceyy . € S foreveryk =1, ..., n, andSis convex, it follows thatf, € C(Q, S).
From(3.11.7)it follows that, for each € Q, we have

tke?

[ IF () — yelly <dS$0) +¢ forallk=1.....n, suchthar e V"

P () =0 forallk =1,...,n, suchthat ¢ V,](ci?,
which gives
e @) = ey <o (O(d} (1) +¢) forallk=1,...,n. (3.11.10)

From(3.11.10 it follows that

ng

D (FO) = yre)pp ()

k=1

<Y o OIF@) = yrelly

x k=1

If() = feOlx =

< Z P (D)(d}(0) + ) =di (1) +¢ forallreQ,
k=1

which gives(3.11.3).

We have now proved that, if at least one of conditigh4 1.21) and(3.11.22) is satisfied,
for eache > 0 there exists, € C(L, S) such tha(3.11.3)holds, from which we conclude
that

de@x)(f. €@, 9))<IId}l - -

Assertion (3.11.2) is thus established in the special case of a Hausdorff compact topological
space. We now turn to the general case of a (possibly non-Hausdorff) compact topological
spacef.

Suppose that at least one of conditigBsl1.21) and(3.11.22) is satisfied and lef €
C (9, X). By virtue of Theorem 3.2, the linear isometh(Q C(Q/~0, X) > C(2,X)is
onto, and consequently there exisse C(Q2/~q, X) suchthatf = ngf. SinceQ/~qis
Hausdorff by Theorem 2.8 (which, by Proposition 2.9, implies that the quotient topological
space(Q/~q) / ~@/~g) €an be identified with2/~q), what we have proved above can be
applied to compute the distance frarpto C(2/~q, S), yielding

de(@/~o.x) (v, C(Q/~. $)) = lld], | (3.11.12)

CQ/~)'



34 L. Burlando / Journal of Approximation Theory 137 (2005) 22-41
Sincng is a linear isometry, from Lemma 3.1(8.11.11)and(3.8.2 we obtain

de.x)(f. C(Q,9)) =dc@.x)(Qavr, C(2,5)) = dc@j~g.x)(vs, C(R)~0, S))

=||d | =|d

» Se Il =
vf C(Q/NQ) QQUf C(Q) f C(.Q)’

which establishe&3.11.2 in the general case and concludes the proaf.

We observe that the functiofy satisfying(3.11.3), constructed in the proof of Theorem
3.11 in the case in whicf is Hausdorff and conditiofB.11.21) is satisfied (that isQ is a
totally disconnected Hausdorff compact topological space), is simple as well as continuous.
Since ¢ = Oc(q), for § = X (3.11.3)gives

If = fellca,x) <&

This enables us to conclude th@X (2, X) is dense inC(Q, X) if Qis as above.

Now assume? to be a (possibly non-Hausdorff) compact topological space, such that
Q/~q is totally disconnected. Sind@/~¢ is compact and Hausdorff (see Theorem 2.8),
from what we have remarked above it follows tldai(Q/~q, X) is dense irC (2/~q, X).
Then, by applying3.9.3)and Theorem 3.2, we obtain the following result.

Proposition 3.12. Let Q be a compact topological spacgjch thatQ/~ is totally dis-
connectedThenCX(Q, X) is dense inC (2, X) for every Banach space X.

If Q/~¢ fails to be totally disconnected afdails to be convex, the inequality ii3.11.1)
may be strict (even i8is connected and closed), as Example 3.13 below shows. Indeed, in
this example we will prove that, for each compact topological sgafm which Q/~q is
not totally disconnected and for each Banach spa@atose dimension with respect to the
real field is not less than two, there exist a nonempty connected closed Sudis¢iand
f € C(Q, X) such thatic g x)(f. C(2.5)) > ||d§||C(Q).
Example 3.13. LetQ be a compact topological space, such that is not totally discon-
nected, and leX be a Banach space (ovi&l) of dimension not less than two with respect
to the real field (that isXis either a nonzero complex Banach space or a real Banach space
of dimension not less than two).

We prove that there exist a nonempty connected closed sBlaet and f € C(Q, X)
such thatlc (o x)(f. C(Q, ) >2 and||dj; ||C(Q) =1.

LetC be a connected component@f~q, containing more than one point. Sin@¢~q
is compact and Hausdorff (see Theorem 2.8), gt idence, by Urysohn’s lemma and by
the connectedness 6f there existspy € C(C) such thatpy(C) = [0, 1]. Now from the
Tietze extension theorem (spY, 2—31]) it follows that there existe € C(2/~q) such
thato)c = ¢g andp(2/~q) = [0, 1].

SinceX has a dimension larger than or equal to 2 with respect to the real field, from the
Riesz lemma and from the compactness of the unit sphere in finite-dimensional normed
spaces we conclude that there exist two norm-one veetoes € X such that the distance
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from e1 to the real subspace &fspanned by, is equal to 1. Hence
loecer + Pez|lx =of foralle, e R. (3.13.1)

Sincee1 andez are linearly independent with respect to the real field, and consequently the
linear (with respect to the real field) madg’ > (o, ) —> oe1+ fez € Y (whereY denotes

the real subspace &fspanned by andey) is a homeomorphism, there exists- 0 such

that

lloer + Peally =0y o2 + 2 forallo, feR. (3.13.2)
We set

Sl={S€2—€11S€ [072“, Sy = {sez—l—el:se [O, g]},
2
S3={S€1+ Sezzs € [—1,1]}
and

S=85US8US3.

Notice thatSis (arcwise) connected, but is not convex. AlSas clearly closed.
Now letu € C(Q2/~q, X) be defined by

u(t) = (2p(t) —1)er forallt € Q/~q.
From(3.13.1)it follows that, for eacht € Q/~q and eachy € [0, 2/5], we have

lu(t) — (se2 — en)llx = 120 (t)e1r — sez2lly =2¢(1) = [|2p(Dexl x = lu(r) + exlx
and

lu(r) = (se2 + evllx = ||2(p(1) — L)er — sez

> 2(1— (1) = [ 2(p(t) — D)er||y = lu(®) — exlly-

Since—e; € S1 andeg € S», we conclude that

dx (u(), S1) = |u(@) + e1l x = 2¢(t)
and

dx (u(t), S2) = |u@) —e1lly = 2(1— (1)) foreveryr € Q/~¢ . (3.13.3)
From(3.13.2 it follows that, for each € Q/~q and eachy € [—1, 1], we have

2
u(t) — (se1 + 3 ez)

2
(Z(p(t) -5 — 1)e1 -5 e2
X

X

25\/(2(p(t)—s—1)2+ i>5<§) =2
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Hence
dx (u(1), S3)=2 for everyr € Q/~q . (3.13.4)

Sinceq(t) € [0, 1]—and consequentlyg1), 2(1 — ¢(1)) € [0, 2]—for everyr € Q/~q,
from (3.13.3)and(3.13.9 it follows that

d5 () =dx (u(t), S) = dx (u(t), S1) A dx (u(t), S2)

_ 20 if + € ([0, 1/2)),
= 2<q’(” A (L= 9"(”)) = { 2(1— o) if 1 € pL([1/2 1]),

which is less than or equal to 1 for alle Q/~q. Sincep(R2/~qg) = [0,1] > 1/2, we
conclude that

1K 1l ¢ gy = 1- (3.13.5)

Now letv € C(Q/~q, S). Suppose first that(C) N S3 # ¥. Then there existg € C such
thatv(zp) € S3. Hence, by virtue 0f3.13.4, we have

lu = vl ¢ (@j~g.x) = lut0) — v(10) I x = dx (u(t0), S3) >2. (3.13.6)

Now suppose(C) C S1 U S». SinceS; andS» are closed and disjoin€, is connected and
v is continuous, it follows that there existse {1, 2} such that(C) C ;. Since

@(C) = o(C) = [0, 1],
from (3.13.3)we obtain

lu = vilc@/~o,x)
=max{|lu(r) —v(®)|x : € Q/~q}
> max{|lu(t) —v(@®)|x : t € C}>max{dx (u(r), S;) : t € C}

_ max{2p(t) : 1t € C} if j=1] _
T maxq2(l-o@):recC) if j= 2} =2 (3.13.7)

From(3.13.6)and(3.13.7)we conclude that
lu = vlic@)~g,x) =2 for everyv € C(Q/~q, S),
and consequently, b§B.13.5),
dc(@/~g.x) (4, C(Q/~0,8))>2> 1= ||d5||C(Q/NQ). (3.13.8)

Finally, let f € C(£, X) be defined byf = uoqgp = qu. Then Lemma 3.10(3.13.8)
and(3.8.2) give

de@.x)(f. C(2,9)) =dc@jmg,x) (1. C(R)~0, 8)) 22> 1
=l lle /g = 1871 (q):

which establishes the desired result.
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The following example deals with the case that is not considered in Example 3.13,
that is, the case of continuous functions with values in a one-dimensional real Banach
space. Indeed, we will show that, for each compact topological spdoe which Q/~q
is not totally disconnected, each real Banach spéod dimension 1 and each discon-
nected (or, equivalently, non-convex) subSetdf X, there existsf € C(Q, X) such that
de@.x) (£, C(2,9)) > I}l o
Example 3.14. Let Q be a compact topological space, such @at- is not totally dis-
connectedX be a real Banach space of dimension 1 &tik a disconnected subset of
X. Without loss of generality, we may assuXie= R (indeed, if we choose a norm-one
elemente of X, the mapA : R > 1 +— e € X is an isometric isomorphism, which

implies thatdc (o) (g, C(2, A)) = dco.x) (A 0g.C(2, A(A))) andd' = dﬁffg‘) for every
continuous functiorg : 2 — R and every nonempty subs&of R).

We prove that there exists € C(Q) such thatdco)(f, C(2,5)) > ||d§””c<s2)‘ By
virtue of Theorem 3.2(3.8.2) and Lemma 3.10, and as in Example 3.13, this is equivalent
to proving that there exisis € C(2/~q) such that

de @/ (1: C(R/~, ) > Idillcq,

LetC and¢ be the same as in Example 3.13. We recall (see Example 3.13) that

o)’ (3.14.1)
() = p(Q/~q) =10,1]. (3.14.2)

First assumes to be connected. Thegnf S, supS) C S. SinceSis disconnected, there
existslg e (inf S, supS) such thatly ¢ S. Notice thatlg is an interior point ofS, and
consequently there exists> 0 such thaflg — ¢, /g +¢] C S. Now letu € C(Q/~q) be
defined by

u(t)y =Ao+2ep)—e forallre Q/~q.

For eachv € C(Q/~q, S), v(C) is contained in eithef—oo, ) or (1o, +00), as b ¢ S.
On the other hand, fron8.14.2) it follows that

uC) = u(Q/~q) =0 — &, o+ ¢l. (3.14.3)
Hence

lu —vlic@/~)
>maX{|u(t) —v(@)|:re€C}>¢ forallve C(Q/q,S). (3.14.4)

Since[lg — &, 2o + €] C S, from (3.14.3) it follows that
di (1) = dr(u(r), S) =0 forallt € Q/~q,
which, together with3.14.4), gives
de @) (1, C(R/~, ) =& > 0= IId} [l ¢y
thus establishing3.14.1).
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Now suppose thas is not connected. Then there existy € S such thatr < y and
(x, y) has a nonempty intersection with\ S. Hence, the open sét\ S has at least one
component which is bounded (being containegkiny)). Consequently, there existb € S
such thaz < b and(a, b) C R\ S. Now letu € C(Q/~¢) be defined by

u(t)y=a+ et)(b—a) forallre Q/~q.

By virtue of (3.14.2), there existgg € 2/~q such thatp(rg) = 1/2 (and consequently
u(to) = (a + b)/2). Sincea, b € S and(a, b) N S = @, from (3.142) and(2.1) we derive
that

d3 (1) = dr(u(t), S) = dr(u(), S)
_Ju@)—a=ot)(b—a) if 1 € 1([0,1/2)) b—a
B { b—u@®)=(1-o0)b-a) iftee (L/21) = 2
=dg(u(to), S) = dr(u(to), S) = d; (t0) forallr € Q/~q,

which gives

b—a
”d;f”C(Q/NQ) = df(to) = T (3.14.5)
Now letv € C(Q/~q, S). Since(a, b) N S = ¢, it follows thatv(C) is contained in either
(=00, a] or [b, +00). On the other hand, frort8.14.2) it follows thatu(C) = [a, b], and
consequently

lu = vllc(@/~g) = MaX|u(t) —v(@)|: 1 € C}2b —a. (3.14.6)
Now (3.145) and(3.14.6) give

b—a
de @) (1, C(@/~, ) 2b = a > —— = Il c 0/~
which in turn yields(3.14.1) and completes the example.

The following example shows that Proposition 3.12 does not hold if the hypothesis that
Q/~q be totally disconnected is dropped. Indeed, we will show th&/ifg is not totally
disconnected anX is nonzero, theil€2' (2, X) is not dense irC (L2, X).

Example 3.15. Let Q be a compact topological space, such at- is not totally dis-
connected, and let be a nonzero Banach space.

We prove thatCX(Q, X) is not dense irC (2, X), which, by virtue of(3.9.3) and of
Theorem 3.2, is equivalent to proving th@X(Q2/~q, X) is not dense irC(2/~q, X).

Letp andC be the same as in Examples 3.13 and 3.14. Sii€g = [0, 1] (see Example
3.13), there existy, 11 € C such thatp(rg) = 0 ande(r1) = 1. Furthermore, letg be a
norm-one element oX, andxj be a norm-one bounded linear functionalXpsatisfying
(x0, x5) = 1.

Now letu € C(2/~q, X) be defined by

u(t) = @(t)xg forallre Q/~q .
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For eachh € CX(Q/~q, X), v(C) is a connected subsetwf/~q), which is finite. Hence,
v(C) consists of a single point, that is, there exigtss X such that

v(t)=y, forallreC.
Then

lu — vlic@/~ x)
= max{|lu(t) —v(t)|x : t € C} = maxX]|o(t)xo — yllx : t €C}
= max{ [(p(t)xo — yu, Xg)| : t € C} = max{| (1) — (yu, x9)| : t € C}
= max{ | (t0) — (yv, xg)| . | @(t1) — (yu. xg)|}
« « [(Vu, xg) |+ 11— (yu. x50 _ 1
= max{ [ {yv. x5)| . | 1= (yy. x$)1}> S >
HenceCX (Q/~q, X) is not dense irC (Q2/~q, X), and the desired result is established.

Finally, we will derive analogues ¢Bur, Corollaries 3.12 and 3.13] for Banach spaces
of continuous functions, as a consequence of Theorem 3.11.

As a preliminary, we observe thatlfis a closed subspace of a Banach sp&aed® is
a compact topological space, th€Q, Y), being a Banach space, is a closed subspace of
C(Q, X).

Corollary 3.16. Let X be a Banach spack,be a closed subspace of X adbe a compact
topological spaceThen
de@,x)(f. C(2.Y)) = Imc@.v)flic@ax)c@r = 17y o flicwx/rv
foreveryf € C(Q, X).
Proof. SinceY is convex, ther(3.11.2 applies, giving
de.x)(f.CQ.7)) = Idjll. g foreveryf e C(Q. X).

Now the desired result follows from Proposition 3.5 and frgh3). O

Notice that Corollary 3.16 is also clearly a consequendBo€, Theorem 2] or—for a
Hausdorff spac&—of [FC, Lemma 2].

The following result can be proved proceeding as in [Bur, Corollary 3.13] (by replacing
an appeal to density of the countably valued elemenis,¢f;, X) with an appeal to density
of I1(Q, X) in C(L, X)). For the reader’s convenience, we will provide an explicit proof
for it.

Corollary 3.17. Let X be a Banach spack,be a closed subspace of X adbe a compact
topological spaceThen:
(3.17.1) the linear map

I C@,X)s fr—nyofeC X/Y)

is bounded and onto;
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(3.17.2) the kernel of"¥ coincides withC(®2, Y);
(3.17.3) the linear map

A8 :C(Q.X)/C(Q.Y)> f+C(Q.Y) — nyo f € C(Q,X/Y)

(induced by“? via the first homomorphism theoreis)sometric and ontdience,
the Banach spaceS(Q2, X)/C(R2,Y) andC (£, X/Y) are isometrically isomor-
phic.

Proof. From Proposition 3.5 we derive th&f? is well defined and bounded. Furthermore,
(3.17.2 follows from Corollary 3.16. Themg is well defined and

A2(C(Q, X)/C(Q,Y)) = I'E(C(Q, X)). (3.17.4)

From Corollary 3.16 it also follows thaj§2 is an isometry, and consequently has closed
range. Therf{,2 has closed range bi3.17.4. Now we prove thaﬁy2 is onto.

Letu € II(Q, X/Y). Then there exist € Z, ¢1,..., 0, € C(Q) and¢y,.... ¢, €
X/Y such that

n

u(t) = Z o (1) & forallr e Q.
P

Foreachk = 1,...,n, letx; € X be such thattyx; = &,. Now let f : Q — X be the
continuous function defined by

n

(1) = Z o ()x; forallt e Q.

k=1
Then

(IYHO =y o HO =y f(O) =Y op(Omyxe = Y o (1) = u(t)
k=1 k=1

forallr € Q,

which givesI' f = u.
We have thus proved that

rg(c@, x)) o M@, X/Y). (3.17.5)

Sincel'$(C(Q, X)) is closed, and1(®2, X/Y) is dense inC(Q, X/Y) by Theorem 2.10,
from (3.17.5)we conclude thaf? is onto, which completes the proof ¢3.17.1). Now

from (3.17.4) it follows thatAgy2 is also onto, which completes the proof @.17.3)and
establishes the corollary.C]

We remark that Corollary 3.17 (and consequently Corollary 3.16) can also be obtained
via an injective tensor product: indeed, it can, for instance, be derived from [DF, 4.2.(2),
4.4 (applied to the metric surjectiory) and 2.7, Property (4)].
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Corollary 3.18. LetQ be a compact topological spack,be a Banach space and S be a
nonempty subset of X.at least one of condition§3.11.21) and (3.11.22) is satisfied,

then:

(3.18.1) dc(a.x)(f. C(Q,5)) = dco.x)(f. C(Q, 5)) forevery f € C(Q, X);
(3.18.2) C(Q2,S) = C(Q, 9).

Proof. Since cﬁ = dfc by (2.1) (and S is convex ifSis convex),(3.18.1)follows from

Theorem 3.11. Sinc€ (2, S) is clearly a closed subset 6f(Q, X), (3.18.1)in turn yields
(3.18.2. O

Notice that if none oonnditionSB.ll.Zl) and(3.11.22) is satisfied, then both th_e in-
equalitydc o, x)(f. C(Q, S)) <dco x)(f. C(Q, S)) andtheinclusiol' (2, §) C C(2, S)
may be strict, as the elementary example mentioned in the Introduction shows.
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