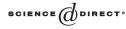


Available online at www.sciencedirect.com



JOURNAL OF Approximation Theory

Journal of Approximation Theory 137 (2005) 22-41

www.elsevier.com/locate/jat

The distance to the functions with range in a given set in Banach spaces of vector-valued continuous functions

Laura Burlando

Dipartimento di Matematica dell'Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy

Received 12 July 2004; accepted 7 July 2005

Communicated by E.W. Cheney Available online 12 October 2005

Abstract

In this paper we give a formula for the distance from an element f of the Banach space $C(\Omega, X)$ where X is a Banach space and Ω is a compact topological space—to the subset $C(\Omega, S)$ of all functions whose range is contained in a given nonempty subset S of X. This formula is given in terms of the norm in $C(\Omega)$ of the distance function to S that is induced by f (namely, of the scalar-valued function d_f^S which maps $t \in \Omega$ into the distance from f(t) to S), and generalizes the known property that the distance from f to $C(\Omega, V)$ be equal to the norm of d_f^V in $C(\Omega)$ for every vector subspace V of X[Buck, Pacific J. Math. 53 (1974) 85–94, Theorem 2; Franchetti and Cheney, Boll. Un. Mat. Ital. B (5) 18 (1981) 1003–1015, Lemma 2]. Indeed, we prove that the distance from f to $C(\Omega, S)$ is larger than or equal to the norm of d_f^S in $C(\Omega)$ for every nonempty subset S of X, and coincides with it if S is convex or a certain quotient topological space of Ω is totally disconnected. Finally, suitable examples are constructed, showing how for each Ω , such that the above-mentioned quotient is not totally disconnected, the set S and the function f can be chosen so that the distance from f to $C(\Omega, S)$ be strictly larger than the $C(\Omega)$ -norm of d_f^S .

© 2005 Elsevier Inc. All rights reserved.

MSC: primary 46E15; 46E40; 41A65

Keywords: Banach spaces of vector-valued continuous functions; Distance formula

0021-9045/\$ - see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jat.2005.07.003

E-mail address: burlando@dima.unige.it.

1. Introduction

Throughout this paper, when the scalar field is not specified, we assume that it may be either \mathbb{C} or \mathbb{R} and denote it by \mathbb{K} .

For each normed space \mathcal{X} , let $\| \|_{\mathcal{X}}$ and $0_{\mathcal{X}}$ denote, respectively, the norm and the zero element of \mathcal{X} . Also, for each $x \in \mathcal{X}$ and each $\varepsilon > 0$, let $B_{\mathcal{X}}(x, \varepsilon)$ stand for the open ball in \mathcal{X} which is centered at x and has a radius equal to ε . Finally, if \mathcal{S} is a nonempty subset of \mathcal{X} , for each $\zeta \in \mathcal{X}$ let $d_{\mathcal{X}}(\zeta, \mathcal{S})$ denote the distance from ζ to \mathcal{S} in \mathcal{X} , namely,

$$d_{\mathcal{X}}(\zeta, \mathcal{S}) = \inf \{ \|\zeta - s\|_{\mathcal{X}} : s \in \mathcal{S} \}.$$

In a forthcoming paper [Bur], we have provided a formula for the distance from $f \in L_p(\mu, X)$ (where X is a Banach space, $(\mathfrak{X}, \mathfrak{M}, \mu)$ is a positive measure space and $1 \leq p \leq \infty$) to the set $L_p(\mu, S)$ of all elements of $L_p(\mu, X)$ whose range is (μ -essentially) contained in a given nonempty subset S of X. Indeed, in [Bur] we have proved that, if S is such that $L_p(\mu, S) \neq \emptyset$, then the equivalence class d_f^S of scalar-valued functions on \mathfrak{X} , defined by $d_f^S(t) = d_X(f(t), S)$ for μ -a.e. $t \in \mathfrak{X}$, belongs to $L_p(\mu)$ and

$$d_{L_p(\mu,X)}(f, L_p(\mu, S)) = \|\mathbf{d}_f^S\|_{L_p(\mu)}$$

(see [Bur, Proposition 3.8 and Theorem 3.11]; this generalizes the formulae provided in [LC, 2.10] and in [L, Theorem 5], dealing with the special case in which S is a vector subspace of X).

We are concerned here with the corresponding approximation problem in the Banach space $C(\Omega, X)$, for a compact topological space Ω and a Banach space X.

Given a nonempty subset *S* of *X*, one could wonder whether the distance from $f \in C(\Omega, X)$ to the set $C(\Omega, S)$ of all $g \in C(\Omega, X)$ with $g(\Omega) \subset S$ is equal to the norm in $C(\Omega)$ of the function

$$d_f^S: \Omega \ni t \longmapsto d_X(f(t), S) \in \mathbb{K}.$$

An elementary example (with $\Omega = \overline{B_{\mathbb{K}}(0, 1)}$, $X = \mathbb{K}$ and $S = \mathbb{K} \setminus \{0\}$) shows that it is not so. Indeed, if we consider the continuous function $\iota : \overline{B_{\mathbb{K}}(0, 1)} \ni \iota \mapsto \iota \in \mathbb{K}$, we have

$$\mathbf{d}_{l}^{\mathbb{K}\setminus\{0\}}(t) = d_{\mathbb{K}}(t, \mathbb{K}\setminus\{0\}) = 0 \quad \text{for all } t \in \overline{B_{\mathbb{K}}(0, 1)},$$

and consequently $\|d_{\iota}^{\mathbb{K}\setminus\{0\}}\|_{C(\overline{B_{\mathbb{K}}(0,1)})} = 0$. Furthermore, it is not difficult to verify that for each $g \in C(\overline{B_{\mathbb{K}}(0,1)})$ satisfying $\|g - \iota\|_{C(\overline{B_{\mathbb{K}}(0,1)})} \leq 1$, we have $0 \in g(\overline{B_{\mathbb{K}}(0,1)})$: this follows from the intermediate value theorem for $\mathbb{K} = \mathbb{R}$; for $\mathbb{K} = \mathbb{C}$, by the Brouwer fixed-point theorem (see for instance [DS, p. 468]) there exists $x_0 \in \overline{B_{\mathbb{K}}(0,1)}$ such that $x_0 = \iota(x_0) - g(x_0) = x_0 - g(x_0)$, and consequently $g(x_0) = 0$. Since the distance from ι to the constant nonzero functions is easily seen to be equal to 1, we conclude that

$$d_{C(\overline{B_{\mathbb{K}}(0,1)})}\left(\iota, C\left(\overline{B_{\mathbb{K}}(0,1)}, \mathbb{K} \setminus \{0\}\right)\right) = 1 > 0 = \left\| \mathbf{d}_{\iota}^{\mathbb{K} \setminus \{0\}} \right\|_{C(\overline{B_{\mathbb{K}}(0,1)})}$$

It is known, however, that the desired equality holds if *S* is a vector subspace of the Banach space *X*. Indeed, this is proved in Lemma 2 of [FC] under the hypothesis that the compact

topological space Ω be Hausdorff, and—as remarked in [LC, p. 134, notes on Chapter 2] can be derived from the formula provided in [Buc, Theorem 2], in which the distance from $f \in C(\Omega, E)$ (where *E* is a normed space and Ω is a compact topological space) to a given $C(\Omega)$ -submodule of $C(\Omega, E)$ is computed. We recall that another result generalizing [FC, Lemma 2] is [LGC, 2.5], in which the distance from $f \in C(K, E)$ (where *K* is a compact Hausdorff space and *E* is a normed space) to the subspace C(K, H)—with respect to the norm on C(K, E) which is induced by any monotone norm α on C(K)—is proved to be equal to the α -norm of d_f^H for every vector subspace *H* of *E*. We also recall that in [JMN, 2.3] the distance from an *E*-valued (where *E* is a nonzero normed space) bounded continuous function *f* on a topological space *T* to the set of all bounded continuous functions from *T* into *E* with values in $E \setminus \{0_E\}$ is proved to coincide with the infimum of all $\delta > 0$ for which the continuous function $t \mapsto f(t)/||f(t)||_E$, defined on the set of all $t \in T$ such that $||f(t)||_E \ge \delta$, has a continuous extension from *T* into $\partial B_E(0_E, 1)$.

In this paper we give sufficient conditions (on the compact topological space Ω or on the subset *S* of the Banach space *X*) in order that equality $d_{C(\Omega, X)}(f, C(\Omega, S)) = \|d_f^S\|_{C(\Omega)}$ be satisfied for every $f \in C(\Omega, X)$.

In Section 2, we gather some preliminaries, which we will need in the continuation of the paper and which mainly concern the properties of the distance function $d_X(., S)$ and of d_f^S , as well as a suitable equivalence relation \sim_{Ω} on a compact topological space Ω , such that the quotient topological space Ω/\sim_{Ω} is Hausdorff. In Section 3 we deal with the problem of finding the distance in $C(\Omega, X)$ from a function f to $C(\Omega, S)$. After observing that the scalar-valued function d_f^S is continuous in Ω for each nonempty subset S of X and each $f \in C(\Omega, X)$ (Proposition 3.4), in Theorem 3.11 we prove that the distance from $f \in C(\Omega, X)$ to the set $C(\Omega, S)$ is not less than the norm of d_f^S in $C(\Omega)$; furthermore, equality holds if the quotient topological space Ω/\sim_{Ω} is totally disconnected or S is convex. In Example 3.13 we show that if Ω/\sim_{Ω} is not totally disconnected subset S of X and a continuous X-valued function f on Ω can be chosen so that the norm of d_f^S in $C(\Omega)$ be strictly less than $d_{C(\Omega,X)}(f, C(\Omega, S))$. Finally, Example 3.14 shows that if X is a one-dimensional real normed space, then equality $d_{C(\Omega,X)}(f, C(\Omega, S)) = \|d_f^S\|_{C(\Omega)}$ holds for every $f \in C(\Omega, X)$ if and only if Ω/\sim_{Ω} is totally disconnected or S is convex.

2. Preliminaries

Let \mathcal{X} be a Banach space and \mathcal{S} be a nonempty subset of \mathcal{X} . It is easily seen that

$$d_{\mathcal{X}}(x,\mathcal{S}) = d_{\mathcal{X}}(x,\overline{\mathcal{S}}) \quad \text{for all } x \in \mathcal{X}.$$
(2.1)

We also recall that the function

 $d_{\mathcal{X}}(., \mathcal{S}) : \mathcal{X} \ni x \longmapsto d_{\mathcal{X}}(x, \mathcal{S}) \in \mathbb{R}$

is continuous, as

$$|d_{\mathcal{X}}(x,\mathcal{S}) - d_{\mathcal{X}}(y,\mathcal{S})| \leq ||x - y||_{\mathcal{X}} \quad \text{for all } x, y \in \mathcal{X}.$$

$$(2.2)$$

Now let \mathcal{Y} be a closed subspace of \mathcal{X} , and let $\pi_{\mathcal{Y}} : \mathcal{X} \longrightarrow \mathcal{X}/\mathcal{Y}$ denote the canonical quotient map. We remark that

$$d_{\mathcal{X}}(x,\mathcal{Y}) = \|\pi_{\mathcal{Y}}x\|_{\mathcal{X}/\mathcal{Y}} \leqslant \|x\|_{\mathcal{X}} \quad \text{for every } x \in \mathcal{X}.$$
(2.3)

Let \mathcal{D} be a set and *X* be a Banach space.

If *S* is a nonempty subset of *X*, following [Bur, Definition 3.6] we define, for each function $f : \mathcal{D} \to X$, the scalar-valued function $d_f^S : \mathcal{D} \to \mathbb{K}$ as follows:

$$d_f^S(t) = d_X(f(t), S)$$
 for all $t \in \mathcal{D}$.

Like in [Bur, (3.2)], from (2.2) we obtain

$$0 \leq \mathsf{d}_f^S(t) \leq \|f(t)\|_X + d_X(0_X, S) \quad \text{for all } t \in \mathcal{D}.$$

$$(2.4)$$

Furthermore, if *f* and *g* are *X*-valued functions, defined on \mathcal{D} , from (2.2) it follows that (like in [Bur, (3.5)])

$$|\mathbf{d}_f^S(t) - \mathbf{d}_g^S(t)| \leq ||f(t) - g(t)||_X \quad \text{for all } t \in \mathcal{D}.$$

$$(2.5)$$

Finally, for each closed subspace Y of X and each function $f : \mathcal{D} \to X$, from (2.3) we obtain

$$d_{f}^{Y}(t) = \|(\pi_{Y} \circ f)(t)\|_{X/Y} \leq \|f(t)\|_{X} \quad \text{for all } t \in \mathcal{D}$$
(2.6)

(which is [Bur, (3.3)]).

If Ω is a compact topological space and X is a Banach space, let $C(\Omega, X)$ denote the Banach space of all continuous functions from Ω into X. We recall that

$$||f||_{C(\Omega,X)} = \max\{||f(t)||_X : t \in \Omega\} \text{ for every } f \in C(\Omega, X).$$

We write $C(\Omega)$ for $C(\Omega, \mathbb{K})$.

For each compact topological space Ω , let \sim_{Ω} denote the equivalence relation on Ω defined by

 $s \sim_{\Omega} t$ if f(s) = f(t) for every continuous function $f : \Omega \to \mathbb{R}$.

It is clear that

$$s, t \in \Omega, \quad s \sim_{\Omega} t \implies f(s) = f(t)$$

for every continuous function $f : \Omega \to \mathbb{C}$. (2.7)

We denote by q_{Ω} the canonical quotient map from Ω onto the quotient topological space Ω/\sim_{Ω} . Also, for each Banach space X, let $Q_{\Omega}^{X} : C(\Omega/\sim_{\Omega}, X) \to C(\Omega, X)$ be the linear map defined by

$$Q_{\Omega}^{X}u = u \circ q_{\Omega}$$
 for every $u \in C(\Omega/\sim_{\Omega}, X)$.

Notice that Q_{Ω}^{X} is an isometry, as q_{Ω} is onto.

Since Ω is compact, the quotient topology of Ω/\sim_{Ω} coincides with the weak topology induced by the family \mathfrak{C} of all functions $u: \Omega/\sim_{\Omega} \to \mathbb{R}$ such that $u \circ q_{\Omega}$ is continuous on

 Ω (namely, see [GJ, 3.3], with the smallest topology on Ω/\sim_{Ω} with respect to which every element of \mathfrak{C} is continuous). Indeed, the latter topology is Hausdorff (as established in the proof of [GJ, Theorem 3.9]) and is weaker than or equal to the quotient topology (with respect to which every element of \mathfrak{C} is easily seen to be continuous). Furthermore, Ω/\sim_{Ω} is compact under the quotient topology (as Ω is compact), and it is well known that any one-to-one continuous map from a compact topological space onto a Hausdorff one is a homeomorphism. Then the following result can be derived from [GJ, Theorem 3.9] (notice that Theorem 3.9 of [GJ] deals only with real-valued continuous functions; however, once the surjectivity of $Q_{\Omega}^{\mathbb{R}}$ is proved, the surjectivity of $Q_{\Omega}^{\mathbb{C}}$ is a straightforward consequence of it).

Theorem 2.8 (see Gillman and Jerison [GJ, Theorem 3.9]). For each compact topological space Ω , the quotient topological space Ω/\sim_{Ω} is compact and Hausdorff. Furthermore, $Q_{\Omega}^{\mathbb{K}}$ is onto. Hence, the Banach spaces $C(\Omega/\sim_{\Omega})$ and $C(\Omega)$ are isometrically isomorphic.

The following is a straightforward consequence of Urysohn's lemma.

Proposition 2.9. If Ω is a Hausdorff compact topological space, for every $s, t \in \Omega$ we have

 $s \sim_{\Omega} t \iff s = t.$

Then, under the hypothesis of Proposition 2.9, Ω/\sim_{Ω} can be identified with Ω .

Let \mathbb{Z}_+ stand for the set of the strictly positive integers.

For each compact topological space Ω and each Banach space X, let $\Pi(\Omega, X)$ denote the vector subspace of $C(\Omega, X)$ which is spanned by the multiples of scalar-valued continuous functions by elements of X, namely, the subspace of all $f \in C(\Omega, X)$ such that there exist $n \in \mathbb{Z}_+, \varphi_1, \ldots, \varphi_n \in C(\Omega)$ and $x_1, \ldots, x_n \in X$ satisfying $f(t) = \sum_{k=1}^n \varphi_k(t) x_k$ for all $t \in \Omega$.

The following result will be useful to us in the sequel.

Theorem 2.10 (Franchetti and Cheney [FC, Lemma 1]; Light and Cheney [LC, proof of 1.13]; Schmets [S, 1.5.3]). Let Ω be a Hausdorff compact topological space and X be a Banach space. Then $\Pi(\Omega, X)$ is dense in $C(\Omega, X)$.

3. A distance formula in spaces of vector-valued continuous functions

We begin by extending (in Theorem 3.2 below) the isomorphism result of Theorem 2.8 to vector-valued functions. This extension will enable us to restrict ourselves to the case of a Hausdorff compact topological space, when necessary.

Lemma 3.1. Let Ω be a compact topological space, $s, t \in \Omega$ and X be a Banach space. Then

 $s \sim_{\Omega} t \implies f(s) = f(t) \text{ for every } f \in C(\Omega, X).$

If in addition X is nonzero, then the reverse implication also holds.

Proof. We begin by remarking that, by taking (2.7) into account, we obtain

$$s \sim_{\Omega} t \iff h(s) = h(t)$$
 for every continuous function $f : \Omega \to \mathbb{K}$. (3.1.1)

Now suppose that $s \sim_{\Omega} t$ and consider any continuous function $f : \Omega \to X$. Also, let X^* denote the dual space of X. Then from (3.1.1) it follows that

$$\langle f(s), x^* \rangle = \langle f(t), x^* \rangle$$
 for every $x^* \in X^*$,

which gives f(s) = f(t).

Finally, let us assume that $X \neq \{0_X\}$ and f(s) = f(t) for every $f \in C(\Omega, X)$. Fix $x_0 \in X \setminus \{0_X\}$. For each $h \in C(\Omega)$, we have $h x_0 \in C(\Omega, X)$. Then $h(s)x_0 = h(t)x_0$, which, since $x_0 \neq 0_X$, gives h(s) = h(t). Hence $s \sim_{\Omega} t$. \Box

Theorem 3.2. Let Ω be a compact topological space and X be a Banach space. Then the linear isometry

$$Q_{\Omega}^{X}: C(\Omega/\sim_{\Omega}, X) \ni u \longmapsto u \circ q_{\Omega} \in C(\Omega, X)$$

(introduced in Section 2) is onto. Hence, the Banach spaces $C(\Omega/\sim_{\Omega}, X)$ and $C(\Omega, X)$ are isometrically isomorphic.

Proof. Let $f \in C(\Omega, X)$. By virtue of Lemma 3.1, there exists a function $u_f : \Omega/\sim_{\Omega} \to X$ such that $u_f(q_{\Omega}(t)) = f(t)$ for every $t \in \Omega$. Now let G be an open subset of X. Then $f^{-1}(G)$ is open in Ω . Furthermore, from Lemma 3.1 it also follows that, for each $s, t \in \Omega$ satisfying $s \sim_{\Omega} t$, we have

$$s \in f^{-1}(G) \iff t \in f^{-1}(G).$$

Hence $u_f^{-1}(G) = q_\Omega(f^{-1}(G))$ is open in Ω/\sim_{Ω} .

We have thus proved that $u_f \in C(\Omega/\sim_{\Omega}, X)$. Since

$$Q^X_\Omega u_f = u_f \circ q_\Omega = f \,,$$

we obtain the desired result. \Box

We remark that the fact that $C(\Omega/\sim_{\Omega}, X)$ and $C(\Omega, X)$ are isometrically isomorphic could also be derived from Theorem 2.8 by using the injective tensor product (as the completion of the tensor product $C(K) \otimes X$ under the injective norm is isometrically isomorphic to C(K, X) for every compact topological space *K*—see [DF, 4.2.(2)], and the injective norm satisfies the metric mapping property—see [DF, 4.1.(5)]).

For the reader's convenience, in Corollary 3.3 below we derive the density of $\Pi(\Omega, X)$ in $C(\Omega, X)$ for every compact space Ω (which is claimed to hold, for instance, in the proof of [DF, 4.2.(2)]) from Theorems 3.2 and 2.10.

Corollary 3.3. Let Ω be a compact topological space and X be a Banach space. Then $\Pi(\Omega, X)$ is dense in $C(\Omega, X)$.

Proof. From Theorems 2.8 and 2.10 it follows that $\Pi(\Omega/\sim_{\Omega}, X)$ is dense in $C(\Omega/\sim_{\Omega}, X)$. Since Q_{Ω}^{X} is onto by Theorem 3.2, we conclude that $Q_{\Omega}^{X}(\Pi(\Omega/\sim_{\Omega}, X))$ is dense in $C(\Omega, X)$. Now, in order to obtain the desired result, it suffices to prove that $Q_{\Omega}^{X}(\Pi(\Omega/\sim_{\Omega}, X)) \subset \Pi(\Omega, X)$.

Let $u \in \Pi(\Omega/\sim_{\Omega}, X)$. Then there exist $n \in \mathbb{Z}_+, \psi_1, \ldots, \psi_n \in C(\Omega/\sim_{\Omega})$ and $x_1, \ldots, x_n \in X$ such that

$$u(\tau) = \sum_{k=1}^{+\infty} \psi_k(\tau) x_k$$
 for all $\tau \in \Omega/\sim_{\Omega}$.

This gives

$$(Q_{\Omega}^{X}u)(t) = u(q_{\Omega}(t)) = \sum_{k=1}^{n} (\psi_{k} \circ q_{\Omega})(t)x_{k} \text{ for all } t \in \Omega.$$

Since $\psi_k \circ q_\Omega \in C(\Omega)$ for all k = 1, ..., n, it follows that $Q_\Omega^X u \in \Pi(\Omega, X)$, which proves the desired inclusion and establishes the corollary. \Box

We remark that, by using Theorem 2.8, it is not difficult to verify that the opposite inclusion with respect to the one stated in the proof of Corollary 3.3 also holds: namely,

$$Q_{\Omega}^{X}(\Pi(\Omega/\sim_{\Omega}, X)) = \Pi(\Omega, X)$$

for every compact topological space Ω and every Banach space *X*.

Now we will state some properties of the scalar-valued function d_f^S , for a continuous function f from a compact topological space into a Banach space X and for a nonempty subset S of X.

The following is a consequence of the continuity of $d_X(., S)$ (see (2.2)) and of (2.4).

Proposition 3.4. Let Ω be a compact topological space, X be a Banach space, S be a nonempty subset of X and $f \in C(\Omega, X)$. Then

$$\mathbf{d}_f^S \in C(\Omega)$$
 and $\|\mathbf{d}_f^S\|_{C(\Omega)} \leq \|f\|_{C(\Omega,X)} + d_X(0_X,S).$

From Proposition 3.4 and from (2.6), we obtain the following result.

Proposition 3.5. Let Ω be a compact topological space, X be a Banach space and Y be a closed subspace of X. Then, for each $f \in C(\Omega, X)$, we have

$$\pi_Y \circ f \in C(\Omega, X/Y) \quad and \quad d_f^Y \in C(\Omega).$$

Furthermore,

$$\|\pi_Y \circ f\|_{C(\Omega, X/Y)} = \|\mathbf{d}_f^I\|_{C(\Omega)} \leq \|f\|_{C(\Omega, X)}.$$

17

From (2.5) and Proposition 3.4 we obtain the following analogue of [Bur, Lemma 3.9] for spaces of continuous functions.

Proposition 3.6. Let Ω be a compact topological space, X be a Banach space and S be a nonempty subset of X. Then the map

$$D_{\Omega}^{S}: C(\Omega, X) \ni f \longmapsto d_{f}^{S} \in C(\Omega)$$

is 1-Lipschitz (and is consequently continuous).

Definition 3.7. Let Ω be a compact topological space and *X* be a Banach space.

For each nonempty subset *S* of *X*, we set

$$C(\Omega, S) = \{ f \in C(\Omega, X) : f(t) \in S \text{ for all } t \in \Omega \}.$$

For each subset *E* of a set \mathcal{D} , let 1_E denote the *characteristic function* of *E*. Namely,

$$1_E: \mathcal{D} \ni t \longmapsto \begin{cases} 1 & \text{if } t \in E \\ 0 & \text{if } t \notin E \end{cases} \in \mathbb{K}.$$

Notice that $1_{\mathcal{D}}(t) = 1$ and $1_{\emptyset}(t) = 0$ for all $t \in \mathcal{D}$.

We remark that, under the hypothesis of Definition 3.7, we have $C(\Omega, S) \supset \{x \mid_{\Omega} : x \in S\}$, and consequently $C(\Omega, S)$ is nonempty.

Remark 3.8. Let Ω be a compact topological space, X be a Banach space and S be a nonempty subset of X. We remark that, for each $u \in C(\Omega/\sim_{\Omega}, X)$ and for each $t \in \Omega$, we have

$$d_u^S(q_\Omega(t)) = d_X(u(q_\Omega(t)), S) = d_{u \circ q_\Omega}^S(t).$$

Hence

$$d_{u}^{S} \circ q_{\Omega} = d_{u \circ q_{\Omega}}^{S} \quad \text{or, equivalently,} \quad Q_{\Omega}^{\mathbb{K}} d_{u}^{S} = d_{Q_{\Omega}^{X} u}^{S}$$

for every $u \in C(\Omega/\sim_{\Omega}, X).$ (3.8.1)

Since $Q_{\Omega}^{\mathbb{K}}$ is an isometry, from (3.8.1) it follows that

$$\|\mathbf{d}_{u}^{S}\|_{C(\Omega/\sim_{\Omega})} = \|\mathbf{d}_{\mathcal{Q}_{\Omega}^{X}u}^{S}\|_{C(\Omega)} = \|\mathbf{d}_{u\circ q_{\Omega}}^{S}\|_{C(\Omega)} \quad \text{for every } u \in C(\Omega/\sim_{\Omega}, X).$$
(3.8.2)

Finally, notice that from (3.8.1) we also obtain

$$Q_{\Omega}^{\mathbb{K}} \left(\mathsf{D}_{\Omega/\sim_{\Omega}}^{S}(u) \right) = Q_{\Omega}^{\mathbb{K}} \mathsf{d}_{u}^{S} = \mathsf{d}_{Q_{\Omega}^{X}u}^{S} = \mathsf{D}_{\Omega}^{S} \left(Q_{\Omega}^{X}u \right) \quad \text{for each } u \in C(\Omega/\sim_{\Omega}, X).$$

namely,

$$Q_{\Omega}^{\mathbb{K}} \circ \mathsf{D}_{\Omega/\sim_{\Omega}}^{S} = \mathsf{D}_{\Omega}^{S} \circ Q_{\Omega}^{X}.$$

We call a function $g : \mathcal{D} \to \mathcal{E}$ (where \mathcal{D} and \mathcal{E} are sets) *simple* if its range $g(\mathcal{D})$ is finite.

If Ω is a compact topological space and X is a Banach space, let $C\Sigma(\Omega, X)$ denote the vector subspace of $C(\Omega, X)$ consisting of all the X-valued continuous simple functions on Ω . Notice that $C\Sigma(\Omega, X)$ contains all the X-valued constant functions on Ω , and consists of them exactly if Ω is connected.

Proposition 3.9. Let Ω be a compact topological space, X be a Banach space and S be a nonempty subset of X. Then:

$$(Q^X_{\Omega}u)(\Omega) = u(\Omega/\sim_{\Omega}) \quad \text{for every } u \in C(\Omega/\sim_{\Omega}, X); \tag{3.9.1}$$

$$C(\Omega, S) = Q_{\Omega}^{X} (C(\Omega/\sim_{\Omega}, S));$$
(3.9.2)

$$C\Sigma(\Omega, X) = Q_{\Omega}^{X} \Big(C\Sigma(\Omega/\sim_{\Omega}, X) \Big).$$
(3.9.3)

Proof. Since

$$Q_{\Omega}^{X}u = u \circ q_{\Omega}$$
 for every $u \in C(\Omega/\sim_{\Omega}, X)$,

we obtain (3.9.1) by the surjectivity of q_{Ω} . Now (3.9.1), together with Theorem 3.2, yields (3.9.2) and (3.9.3). The proof is thus complete. \Box

Lemma 3.10. Let Ω be a compact topological space, X be a Banach space and S be a nonempty subset of X. Then

$$d_{C(\Omega/\sim_{\Omega},X)}(u, C(\Omega/\sim_{\Omega}, S)) = d_{C(\Omega,X)}(Q_{\Omega}^{X}u, C(\Omega, S))$$
$$= d_{C(\Omega,X)}(u \circ q_{\Omega}, C(\Omega, S))$$

for every $u \in C(\Omega/\sim_{\Omega}, X)$.

Proof. Let $u \in C(\Omega/\sim_{\Omega}, X)$. Since $u \circ q_{\Omega} = Q_{\Omega}^{X}u$ and Q_{Ω}^{X} is a linear isometry, from (3.9.2) we obtain

$$\begin{aligned} d_{C(\Omega,X)} \left(u \circ q_{\Omega}, C(\Omega, S) \right) \\ &= d_{C(\Omega,X)} \left(Q_{\Omega}^{X} u, C(\Omega, S) \right) \\ &= d_{C(\Omega,X)} \left(Q_{\Omega}^{X} u, Q_{\Omega}^{X} (C(\Omega/\sim_{\Omega}, S)) \right) \\ &= \inf \left\{ \| Q_{\Omega}^{X} u - Q_{\Omega}^{X} v \|_{C(\Omega,X)} : v \in C(\Omega/\sim_{\Omega}, S) \right\} \\ &= \inf \left\{ \| u - v \|_{C(\Omega/\sim_{\Omega},X)} : v \in C(\Omega/\sim_{\Omega}, S) \right\} = d_{C(\Omega/\sim_{\Omega},X)} \left(u, C(\Omega/\sim_{\Omega}, S) \right), \end{aligned}$$

which establishes the desired result. \Box

Theorem 3.11. Let Ω be a compact topological space, X be a Banach space and S be a nonempty subset of X. Then: (3.11.1) $d_{C(\Omega,X)}(f, C(\Omega, S)) \ge \|d_f^S\|_{C(\Omega)}$ for every $f \in C(\Omega, X)$; (3.11.2) if, in addition, at least one of the following two conditions is satisfied: (3.11.2.1) Ω/\sim_{Ω} is totally disconnected (3.11.2.2) S is convex, we have $d_{C(\Omega,X)}(f, C(\Omega, S)) = \|d_f^S\|_{C(\Omega)}$ for every $f \in C(\Omega, X)$.

Proof. In order to obtain (3.11.1), we proceed in a manner analogous to the proof of the corresponding inequality in [Bur, Theorem 3.11]. Indeed, given $f \in C(\Omega, X)$, for each

 $g \in C(\Omega, S)$ we have

$$\|f(t) - g(t)\|_X \ge d_X(f(t), S) = \mathsf{d}_f^S(t) \quad \text{for all } t \in \Omega.$$

This gives

$$\|f - g\|_{C(\Omega, X)} \ge \|\mathbf{d}_f^S\|_{C(\Omega)},$$

which in turn yields the desired inequality.

Now we prove (3.11.2).

First suppose Ω to be Hausdorff.

Let $f \in C(\Omega, X)$. By virtue of (3.11.1), we have

$$d_{C(\Omega,X)}(f, C(\Omega, S)) \ge \|\mathbf{d}_f^S\|_{C(\Omega)}$$

We prove that the opposite inequality also holds if at least one of conditions (3.11.2.1) and (3.11.2.2) is satisfied.

Fix $\varepsilon > 0$. We prove that, if condition (3.11.2.1) or condition (3.11.2.2) is satisfied, there exists $f_{\varepsilon} \in C(\Omega, S)$ such that

$$\|f - f_{\varepsilon}\|_{C(\Omega, X)} \leq \|\mathbf{d}_{f}^{S}\|_{C(\Omega)} + \varepsilon.$$
(3.11.3)

Since *f* is continuous, it follows that, for each $t \in \Omega$, there exists an open neighborhood $V_t^{(\varepsilon)}$ of *t* such that

$$f(V_t^{(\varepsilon)}) \subset B_X(f(t), \varepsilon/3). \tag{3.11.4}$$

Furthermore, since Ω is compact, there exist a positive integer n_{ε} and $t_{1,\varepsilon}, \ldots, t_{n_{\varepsilon},\varepsilon} \in \Omega$ such that

$$\Omega = \bigcup_{k=1}^{n_{\varepsilon}} V_{t_{k,\varepsilon}}^{(\varepsilon)}.$$
(3.11.5)

We remark that from (2.2) and from (3.11.4) we obtain

$$\begin{aligned} \left| d_X \left(f(t), S \right) - d_X \left(f(t_{k,\varepsilon}), S \right) \right| &\leq \| f(t) - f(t_{k,\varepsilon}) \|_X < \varepsilon/3 \\ \text{for every } k \in \{1, \dots, n_\varepsilon\}, \ t \in V_{t_{k,\varepsilon}}^{(\varepsilon)}. \end{aligned}$$

Hence

$$d_X(f(t_{k,\varepsilon}), S) < d_X(f(t), S) + \varepsilon/3$$

for every $k = 1, \dots, n_{\varepsilon}$ and $t \in V_{t_{k,\varepsilon}}^{(\varepsilon)}$. (3.11.6)

For each $k = 1, ..., n_{\varepsilon}$, let $y_{k,\varepsilon} \in S$ be such that

$$\|f(t_{k,\varepsilon}) - y_{k,\varepsilon}\|_X < d_X(f(t_{k,\varepsilon}), S) + \varepsilon/3.$$

Then from (3.11.4) and (3.11.6) we obtain

$$\|f(t) - y_{k,\varepsilon}\|_{X} \leq \|f(t) - f(t_{k,\varepsilon})\|_{X} + \|f(t_{k,\varepsilon}) - y_{k,\varepsilon}\|_{X} \leq \varepsilon/3 + d_{X}(f(t_{k,\varepsilon}), S) + \varepsilon/3 < d_{X}(f(t), S) + \varepsilon = \mathsf{d}_{f}^{S}(t) + \varepsilon$$

for all $k = 1, \dots, n_{\varepsilon}$ and $t \in V_{t_{k,\varepsilon}}^{(\varepsilon)}$. (3.11.7)

If condition (3.11.2.1) is satisfied, then Ω is totally disconnected by virtue of Proposition 2.9. Since Ω is Hausdorff, compact and totally disconnected, from [HY, Theorem 2–15] it follows that every point of Ω has a neighborhood basis consisting of sets which are open and closed at the same time. Therefore, it is not restrictive to assume that the sets $V_t^{(\varepsilon)}$ above, $t \in \Omega$, are closed as well as open. Now set

$$W_{1,\varepsilon} = V_{t_{1,\varepsilon}}^{(\varepsilon)}$$
 and $W_{k,\varepsilon} = V_{t_{k,\varepsilon}}^{(\varepsilon)} \setminus \left(\bigcup_{j=1}^{k-1} V_{t_{j,\varepsilon}}^{(\varepsilon)} \right)$ for $1 < k \leq n_{\varepsilon}$.

Notice that $W_{k,\varepsilon}$ is open and closed in Ω for every $k = 1, ..., n_{\varepsilon}$. Therefore, $1_{W_{k,\varepsilon}} \in C(\Omega)$ for every $k = 1, ..., n_{\varepsilon}$. Let $f_{\varepsilon} \in C(\Omega, X)$ be defined by

$$f_{\varepsilon}(t) = \sum_{k=1}^{n_{\varepsilon}} y_{k,\varepsilon} \mathbf{1}_{W_{k,\varepsilon}}(t) \text{ for all } t \in \Omega.$$

Notice that

$$W_{j,\varepsilon} \cap W_{k,\varepsilon} = \emptyset$$
 for all $j, k \in \{1, \dots, n_{\varepsilon}\}$ satisfying $j \neq k$. (3.11.8)

Furthermore, by virtue of (3.11.5), we have

$$\bigcup_{k=1}^{n_{\varepsilon}} W_{k,\varepsilon} = \bigcup_{k=1}^{n_{\varepsilon}} V_{l_{k,\varepsilon}}^{(\varepsilon)} = \Omega.$$
(3.11.9)

From (3.11.8) and (3.11.9) it follows that

$$f_{\varepsilon}(\Omega) \subset \{y_{1,\varepsilon},\ldots,y_{n_{\varepsilon},\varepsilon}\} \subset S,$$

and consequently $f_{\varepsilon} \in C(\Omega, S)$. Furthermore, since

 $W_{k,\varepsilon} \subset V_{t_{k,\varepsilon}}^{(\varepsilon)}$ for every $k = 1, \ldots, n_{\varepsilon}$,

from (3.11.7) and (3.11.8) it follows that, for each $k = 1, ..., n_{\varepsilon}$ and each $t \in W_{k,\varepsilon}$, we have

$$\|f(t) - f_{\varepsilon}(t)\|_{X} = \|f(t) - y_{k,\varepsilon}\|_{X} < \mathrm{d}_{f}^{S}(t) + \varepsilon.$$

Now, by virtue of (3.11.9), we conclude that

$$\|f - f_{\varepsilon}\|_{C(\Omega, X)} = \max\left\{\max\{\|f(t) - f_{\varepsilon}(t)\|_{X} : t \in W_{k, \varepsilon}\} : k = 1, \dots, n_{\varepsilon}\right\}$$

$$< \|\mathbf{d}_{f}^{S}\|_{C(\Omega)} + \varepsilon,$$

which gives (3.11.3).

Now assume condition (3.11.2.2) to be satisfied. We proceed in a manner similar to the proof of [S, I.5.3], proceeding toward a finite partition of unity. Indeed, since Ω is compact and Hausdorff, and $V_{t_{k,\varepsilon}}^{(\varepsilon)}$ is open in Ω for all $k = 1, ..., n_{\varepsilon}$, from (3.11.5) and from a consequence of Urysohn's lemma (see [R, 2.13]) it follows that there exist $\varphi_{1,\varepsilon}, ..., \varphi_{n_{\varepsilon},\varepsilon} \in C(\Omega)$ such that $\varphi_{k,\varepsilon}(\Omega) \subset [0, 1]$ and the support of $\varphi_{k,\varepsilon}$ is contained in $V_{t_{k,\varepsilon}}^{(\varepsilon)}$ for every $k = 1, ..., n_{\varepsilon}$, and, moreover, $\sum_{k=1}^{n_{\varepsilon}} \varphi_{k,\varepsilon}(t) = 1$ for every $t \in \Omega$. Now let $f_{\varepsilon} \in C(\Omega, X)$ be defined by

$$f_{\varepsilon}(t) = \sum_{k=1}^{n_{\varepsilon}} y_{k,\varepsilon} \varphi_{k,\varepsilon}(t) \quad \text{for all } t \in \Omega.$$

Since $y_{k,\varepsilon} \in S$ for every $k = 1, ..., n_{\varepsilon}$ and *S* is convex, it follows that $f_{\varepsilon} \in C(\Omega, S)$. From (3.11.7) it follows that, for each $t \in \Omega$, we have

$$\begin{cases} \|f(t) - y_{k,\varepsilon}\|_X < d_f^S(t) + \varepsilon & \text{for all } k = 1, \dots, n_\varepsilon \text{ such that } t \in V_{t_{k,\varepsilon}}^{(\varepsilon)}, \\ \varphi_{k,\varepsilon}(t) = 0 & \text{for all } k = 1, \dots, n_\varepsilon \text{ such that } t \notin V_{t_{k,\varepsilon}}^{(\varepsilon)}, \end{cases}$$

which gives

$$\varphi_{k,\varepsilon}(t) \| f(t) - y_{k,\varepsilon} \|_X \leq \varphi_{k,\varepsilon}(t) \left(\mathbf{d}_f^S(t) + \varepsilon \right) \quad \text{for all } k = 1, \dots, n_{\varepsilon}.$$
(3.11.10)

From (3.11.10) it follows that

$$\|f(t) - f_{\varepsilon}(t)\|_{X} = \left\|\sum_{k=1}^{n_{\varepsilon}} (f(t) - y_{k,\varepsilon})\varphi_{k,\varepsilon}(t)\right\|_{X} \leqslant \sum_{k=1}^{n_{\varepsilon}} \varphi_{k,\varepsilon}(t)\|f(t) - y_{k,\varepsilon}\|_{X}$$
$$\leqslant \sum_{k=1}^{n_{\varepsilon}} \varphi_{k,\varepsilon}(t) (d_{f}^{S}(t) + \varepsilon) = d_{f}^{S}(t) + \varepsilon \quad \text{for all } t \in \Omega,$$

which gives (3.11.3).

We have now proved that, if at least one of conditions (3.11.2.1) and (3.11.2.2) is satisfied, for each $\varepsilon > 0$ there exists $f_{\varepsilon} \in C(\Omega, S)$ such that (3.11.3) holds, from which we conclude that

$$d_{C(\Omega,X)}(f, C(\Omega, S)) \leq \|\mathbf{d}_f^S\|_{C(\Omega)}.$$

Assertion (3.11.2) is thus established in the special case of a Hausdorff compact topological space. We now turn to the general case of a (possibly non-Hausdorff) compact topological space Ω .

Suppose that at least one of conditions (3.11.2.1) and (3.11.2.2) is satisfied and let $f \in C(\Omega, X)$. By virtue of Theorem 3.2, the linear isometry $Q_{\Omega}^{X} : C(\Omega/\sim_{\Omega}, X) \to C(\Omega, X)$ is onto, and consequently there exists $v_f \in C(\Omega/\sim_{\Omega}, X)$ such that $f = Q_{\Omega}^{X}v_f$. Since Ω/\sim_{Ω} is Hausdorff by Theorem 2.8 (which, by Proposition 2.9, implies that the quotient topological space $(\Omega/\sim_{\Omega})/\sim_{(\Omega/\sim_{\Omega})}$ can be identified with Ω/\sim_{Ω}), what we have proved above can be applied to compute the distance from v_f to $C(\Omega/\sim_{\Omega}, S)$, yielding

$$d_{C(\Omega/\sim_{\Omega},X)}(v_f, C(\Omega/\sim_{\Omega}, S)) = \|\mathbf{d}_{v_f}^S\|_{C(\Omega/\sim_{\Omega})}.$$
(3.11.11)

Since Q_{Ω}^{X} is a linear isometry, from Lemma 3.10, (3.11.11) and (3.8.2) we obtain

$$\begin{aligned} d_{C(\Omega,X)}\big(f,C(\Omega,S)\big) &= d_{C(\Omega,X)}\big(\mathcal{Q}_{\Omega}^{X}v_{f},C(\Omega,S)\big) = d_{C(\Omega/\sim_{\Omega},X)}\big(v_{f},C(\Omega/\sim_{\Omega},S)\big) \\ &= \|\mathbf{d}_{v_{f}}^{S}\|_{C(\Omega/\sim_{\Omega})} = \|\mathbf{d}_{\mathcal{Q}_{\Omega}^{X}v_{f}}^{S}\|_{C(\Omega)} = \|\mathbf{d}_{f}^{S}\|_{C(\Omega)},\end{aligned}$$

which establishes (3.11.2) in the general case and concludes the proof. \Box

We observe that the function f_{ε} satisfying (3.11.3), constructed in the proof of Theorem 3.11 in the case in which Ω is Hausdorff and condition (3.11.2.1) is satisfied (that is, Ω is a totally disconnected Hausdorff compact topological space), is simple as well as continuous. Since $d_f^X = O_{C(\Omega)}$, for S = X (3.11.3) gives

$$\|f - f_{\varepsilon}\|_{C(\Omega,X)} \leq \varepsilon.$$

This enables us to conclude that $C\Sigma(\Omega, X)$ is dense in $C(\Omega, X)$ if Ω is as above.

Now assume Ω to be a (possibly non-Hausdorff) compact topological space, such that Ω/\sim_{Ω} is totally disconnected. Since Ω/\sim_{Ω} is compact and Hausdorff (see Theorem 2.8), from what we have remarked above it follows that $C\Sigma(\Omega/\sim_{\Omega}, X)$ is dense in $C(\Omega/\sim_{\Omega}, X)$. Then, by applying (3.9.3) and Theorem 3.2, we obtain the following result.

Proposition 3.12. Let Ω be a compact topological space, such that Ω/\sim_{Ω} is totally disconnected. Then $C\Sigma(\Omega, X)$ is dense in $C(\Omega, X)$ for every Banach space X.

If Ω/\sim_{Ω} fails to be totally disconnected and *S* fails to be convex, the inequality in (3.11.1) may be strict (even if *S* is connected and closed), as Example 3.13 below shows. Indeed, in this example we will prove that, for each compact topological space Ω for which Ω/\sim_{Ω} is not totally disconnected and for each Banach space *X* whose dimension with respect to the real field is not less than two, there exist a nonempty connected closed subset *S* of *X* and $f \in C(\Omega, X)$ such that $d_{C(\Omega, X)}(f, C(\Omega, S)) > \|d_f^S\|_{C(\Omega)}$.

Example 3.13. Let Ω be a compact topological space, such that Ω/\sim_{Ω} is not totally disconnected, and let *X* be a Banach space (over \mathbb{K}) of dimension not less than two with respect to the real field (that is, *X* is either a nonzero complex Banach space or a real Banach space of dimension not less than two).

We prove that there exist a nonempty connected closed subset *S* of *X* and $f \in C(\Omega, X)$ such that $d_{C(\Omega,X)}(f, C(\Omega, S)) \ge 2$ and $\|\mathbf{d}_f^S\|_{C(\Omega)} = 1$.

Let C be a connected component of Ω/\sim_{Ω} , containing more than one point. Since Ω/\sim_{Ω} is compact and Hausdorff (see Theorem 2.8), so is C. Hence, by Urysohn's lemma and by the connectedness of C, there exists $\varphi_0 \in C(C)$ such that $\varphi_0(C) = [0, 1]$. Now from the Tietze extension theorem (see [HY, 2–31]) it follows that there exists $\varphi \in C(\Omega/\sim_{\Omega})$ such that $\varphi_{|C} = \varphi_0$ and $\varphi(\Omega/\sim_{\Omega}) = [0, 1]$.

Since X has a dimension larger than or equal to 2 with respect to the real field, from the Riesz lemma and from the compactness of the unit sphere in finite-dimensional normed spaces we conclude that there exist two norm-one vectors $e_1, e_2 \in X$ such that the distance

from e_1 to the real subspace of X spanned by e_2 is equal to 1. Hence

$$\|\alpha e_1 + \beta e_2\|_{\mathcal{X}} \ge |\alpha| \quad \text{for all } \alpha, \beta \in \mathbb{R}.$$
(3.13.1)

Since e_1 and e_2 are linearly independent with respect to the real field, and consequently the linear (with respect to the real field) map $\mathbb{R}^2 \ni (\alpha, \beta) \longmapsto \alpha e_1 + \beta e_2 \in Y$ (where *Y* denotes the real subspace of *X* spanned by e_1 and e_2) is a homeomorphism, there exists $\delta > 0$ such that

$$\|\alpha e_1 + \beta e_2\|_X \ge \delta \sqrt{\alpha^2 + \beta^2} \quad \text{for all } \alpha, \ \beta \in \mathbb{R}.$$
(3.13.2)

We set

$$S_{1} = \left\{ se_{2} - e_{1} : s \in \left[0, \frac{2}{\delta}\right] \right\}, \quad S_{2} = \left\{ se_{2} + e_{1} : s \in \left[0, \frac{2}{\delta}\right] \right\},$$
$$S_{3} = \left\{ se_{1} + \frac{2}{\delta} e_{2} : s \in [-1, 1] \right\}$$

and

$$S = S_1 \cup S_2 \cup S_3.$$

Notice that S is (arcwise) connected, but is not convex. Also, S is clearly closed.

Now let $u \in C(\Omega/\sim_{\Omega}, X)$ be defined by

$$u(t) = (2\varphi(t) - 1)e_1$$
 for all $t \in \Omega/\sim_{\Omega}$.

From (3.13.1) it follows that, for each $t \in \Omega/\sim_{\Omega}$ and each $s \in [0, 2/\delta]$, we have

$$\|u(t) - (se_2 - e_1)\|_X = \|2\varphi(t)e_1 - se_2\|_X \ge 2\varphi(t) = \|2\varphi(t)e_1\|_X = \|u(t) + e_1\|_X$$

and

$$\|u(t) - (se_2 + e_1)\|_X = \|2(\varphi(t) - 1)e_1 - se_2\|_X$$

$$\ge 2(1 - \varphi(t)) = \|2(\varphi(t) - 1)e_1\|_X = \|u(t) - e_1\|_X.$$

Since $-e_1 \in S_1$ and $e_1 \in S_2$, we conclude that

$$d_X(u(t), S_1) = ||u(t) + e_1||_X = 2\varphi(t)$$

and

$$d_X(u(t), S_2) = ||u(t) - e_1||_X = 2(1 - \varphi(t)) \quad \text{for every } t \in \Omega/\sim_\Omega .$$
(3.13.3)

From (3.13.2) it follows that, for each $t \in \Omega/\sim_{\Omega}$ and each $s \in [-1, 1]$, we have

$$\left\| u(t) - \left(se_1 + \frac{2}{\delta} e_2 \right) \right\|_X = \left\| \left(2\varphi(t) - s - 1 \right)e_1 - \frac{2}{\delta} e_2 \right\|_X \\ \ge \delta \sqrt{\left(2\varphi(t) - s - 1 \right)^2 + \frac{4}{\delta^2}} \ge \delta \left(\frac{2}{\delta} \right) = 2.$$

Hence

$$d_X(u(t), S_3) \ge 2$$
 for every $t \in \Omega/\sim_{\Omega}$. (3.13.4)

Since $\varphi(t) \in [0, 1]$ —and consequently $2\varphi(t), 2(1 - \varphi(t)) \in [0, 2]$ —for every $t \in \Omega/\sim_{\Omega}$, from (3.13.3) and (3.13.4) it follows that

$$d_{u}^{S}(t) = d_{X}(u(t), S) = d_{X}(u(t), S_{1}) \wedge d_{X}(u(t), S_{2})$$

= $2(\varphi(t) \wedge (1 - \varphi(t))) = \begin{cases} 2\varphi(t) & \text{if } t \in \varphi^{-1}([0, 1/2]), \\ 2(1 - \varphi(t)) & \text{if } t \in \varphi^{-1}([1/2, 1]), \end{cases}$

which is less than or equal to 1 for all $t \in \Omega/\sim_{\Omega}$. Since $\varphi(\Omega/\sim_{\Omega}) = [0, 1] \ni 1/2$, we conclude that

$$\|\mathbf{d}_{u}^{S}\|_{C(\Omega/\gamma_{\Omega})} = 1.$$
(3.13.5)

Now let $v \in C(\Omega/\sim_{\Omega}, S)$. Suppose first that $v(\mathcal{C}) \cap S_3 \neq \emptyset$. Then there exists $t_0 \in \mathcal{C}$ such that $v(t_0) \in S_3$. Hence, by virtue of (3.13.4), we have

$$\|u - v\|_{C(\Omega/\sim_{\Omega}, X)} \ge \|u(t_0) - v(t_0)\|_X \ge d_X(u(t_0), S_3) \ge 2.$$
(3.13.6)

Now suppose $v(\mathcal{C}) \subset S_1 \cup S_2$. Since S_1 and S_2 are closed and disjoint, \mathcal{C} is connected and v is continuous, it follows that there exists $j \in \{1, 2\}$ such that $v(\mathcal{C}) \subset S_j$. Since

$$\varphi(\mathcal{C}) = \varphi_0(\mathcal{C}) = [0, 1],$$

from (3.13.3) we obtain

$$\|u - v\|_{C(\Omega/\gamma_{\Omega}, X)} = \max\{\|u(t) - v(t)\|_{X} : t \in \Omega/\gamma_{\Omega}\} \\ \ge \max\{\|u(t) - v(t)\|_{X} : t \in \mathcal{C}\} \ge \max\{d_{X}(u(t), S_{j}) : t \in \mathcal{C}\} \\ = \max\{2\varphi(t) : t \in \mathcal{C}\} \quad \text{if } j = 1 \\ \max\{2(1 - \varphi(t)) : t \in \mathcal{C}\} \quad \text{if } j = 2\} = 2.$$
(3.13.7)

From (3.13.6) and (3.13.7) we conclude that

$$||u - v||_{C(\Omega/\sim_{\Omega}, X)} \ge 2$$
 for every $v \in C(\Omega/\sim_{\Omega}, S)$

and consequently, by (3.13.5),

$$d_{C(\Omega/\sim_{\Omega},X)}\left(u, C(\Omega/\sim_{\Omega}, S)\right) \ge 2 > 1 = \|\mathbf{d}_{u}^{S}\|_{C(\Omega/\sim_{\Omega})}.$$
(3.13.8)

Finally, let $f \in C(\Omega, X)$ be defined by $f = u \circ q_{\Omega} = Q_{\Omega}^{X} u$. Then Lemma 3.10, (3.13.8) and (3.8.2) give

$$d_{C(\Omega,X)}(f, C(\Omega, S)) = d_{C(\Omega/\sim_{\Omega}, X)}(u, C(\Omega/\sim_{\Omega}, S)) \ge 2 > 1$$

= $\|\mathbf{d}_{u}^{S}\|_{C(\Omega/\sim_{\Omega})} = \|\mathbf{d}_{f}^{S}\|_{C(\Omega)},$

which establishes the desired result.

The following example deals with the case that is not considered in Example 3.13, that is, the case of continuous functions with values in a one-dimensional real Banach space. Indeed, we will show that, for each compact topological space Ω for which Ω/\sim_{Ω} is not totally disconnected, each real Banach space *X* of dimension 1 and each disconnected (or, equivalently, non-convex) subset *S* of *X*, there exists $f \in C(\Omega, X)$ such that $d_{C(\Omega, X)}(f, C(\Omega, S)) > \|\mathbf{d}_f^S\|_{C(\Omega)}$.

Example 3.14. Let Ω be a compact topological space, such that Ω/\sim_{Ω} is not totally disconnected, *X* be a real Banach space of dimension 1 and *S* be a disconnected subset of *X*. Without loss of generality, we may assume $X = \mathbb{R}$ (indeed, if we choose a norm-one element *e* of *X*, the map $\Lambda : \mathbb{R} \ni \lambda \longmapsto \lambda e \in X$ is an isometric isomorphism, which implies that $d_{C(\Omega)}(g, C(\Omega, \Lambda)) = d_{C(\Omega, X)}(\Lambda \circ g, C(\Omega, \Lambda(A)))$ and $d_g^A = d_{\Lambda \circ g}^{\Lambda(A)}$ for every continuous function $g : \Omega \to \mathbb{R}$ and every nonempty subset A of \mathbb{R}).

We prove that there exists $f \in C(\Omega)$ such that $d_{C(\Omega)}(f, C(\Omega, S)) > ||d_f^S||_{C(\Omega)}$. By virtue of Theorem 3.2, (3.8.2) and Lemma 3.10, and as in Example 3.13, this is equivalent to proving that there exists $u \in C(\Omega/\sim_{\Omega})$ such that

$$d_{C(\Omega/\sim_{\Omega})}(u, C(\Omega/\sim_{\Omega}, S)) > \|\mathbf{d}_{u}^{S}\|_{C(\Omega/\sim_{\Omega})}.$$
(3.14.1)

Let C and φ be the same as in Example 3.13. We recall (see Example 3.13) that

$$\varphi(\mathcal{C}) = \varphi(\Omega/\sim_{\Omega}) = [0, 1]. \tag{3.14.2}$$

First assume \overline{S} to be connected. Then (inf *S*, sup *S*) $\subset \overline{S}$. Since *S* is disconnected, there exists $\lambda_0 \in (\inf S, \sup S)$ such that $\lambda_0 \notin S$. Notice that λ_0 is an interior point of \overline{S} , and consequently there exists $\varepsilon > 0$ such that $[\lambda_0 - \varepsilon, \lambda_0 + \varepsilon] \subset \overline{S}$. Now let $u \in C(\Omega/\sim_{\Omega})$ be defined by

$$u(t) = \lambda_0 + 2\varepsilon\varphi(t) - \varepsilon$$
 for all $t \in \Omega/\sim_{\Omega}$.

For each $v \in C(\Omega/\sim_{\Omega}, S)$, $v(\mathcal{C})$ is contained in either $(-\infty, \lambda_0)$ or $(\lambda_0, +\infty)$, as $\lambda_0 \notin S$. On the other hand, from (3.14.2) it follows that

$$u(\mathcal{C}) = u(\Omega/\sim_{\Omega}) = [\lambda_0 - \varepsilon, \lambda_0 + \varepsilon].$$
(3.14.3)

Hence

$$\|u - v\|_{C(\Omega/\sim_{\Omega})} \ge \max\{|u(t) - v(t)| : t \in \mathcal{C}\} > \varepsilon \quad \text{for all } v \in C(\Omega/\sim_{\Omega}, S).$$
(3.14.4)

Since $[\lambda_0 - \varepsilon, \lambda_0 + \varepsilon] \subset \overline{S}$, from (3.14.3) it follows that

$$d_{u}^{S}(t) = d_{\mathbb{R}}(u(t), S) = 0 \text{ for all } t \in \Omega/\sim_{\Omega},$$

which, together with (3.14.4), gives

$$d_{C(\Omega/\sim_{\Omega})}(u, C(\Omega/\sim_{\Omega}, S)) \geq \varepsilon > 0 = \|\mathbf{d}_{u}^{S}\|_{C(\Omega/\sim_{\Omega})},$$

thus establishing (3.14.1).

Now suppose that \overline{S} is not connected. Then there exist $x, y \in \overline{S}$ such that x < y and (x, y) has a nonempty intersection with $\mathbb{R} \setminus \overline{S}$. Hence, the open set $\mathbb{R} \setminus \overline{S}$ has at least one component which is bounded (being contained in (x, y)). Consequently, there exist $a, b \in \overline{S}$ such that a < b and $(a, b) \subset \mathbb{R} \setminus \overline{S}$. Now let $u \in C(\Omega/\sim_{\Omega})$ be defined by

$$u(t) = a + \varphi(t)(b - a)$$
 for all $t \in \Omega/\sim_{\Omega}$.

By virtue of (3.14.2), there exists $t_0 \in \Omega/\sim_{\Omega}$ such that $\varphi(t_0) = 1/2$ (and consequently $u(t_0) = (a+b)/2$). Since $a, b \in \overline{S}$ and $(a, b) \cap \overline{S} = \emptyset$, from (3.14.2) and (2.1) we derive that

$$\begin{aligned} d_{u}^{S}(t) &= d_{\mathbb{R}}(u(t), S) = d_{\mathbb{R}}(u(t), \overline{S}) \\ &= \begin{cases} u(t) - a = \varphi(t)(b - a) & \text{if } t \in \varphi^{-1}([0, 1/2]) \\ b - u(t) &= (1 - \varphi(t))(b - a) & \text{if } t \in \varphi^{-1}([1/2, 1]) \end{cases} \leqslant \frac{b - a}{2} \\ &= d_{\mathbb{R}}(u(t_{0}), \overline{S}) = d_{\mathbb{R}}(u(t_{0}), S) = d_{u}^{S}(t_{0}) & \text{for all } t \in \Omega/\sim_{\Omega}, \end{aligned}$$

which gives

$$\|\mathbf{d}_{u}^{S}\|_{C(\Omega/\sim_{\Omega})} = \mathbf{d}_{u}^{S}(t_{0}) = \frac{b-a}{2}.$$
(3.14.5)

Now let $v \in C(\Omega/\sim_{\Omega}, S)$. Since $(a, b) \cap S = \emptyset$, it follows that $v(\mathcal{C})$ is contained in either $(-\infty, a]$ or $[b, +\infty)$. On the other hand, from (3.14.2) it follows that $u(\mathcal{C}) = [a, b]$, and consequently

$$\|u - v\|_{C(\Omega/\sim_0)} \ge \max\{|u(t) - v(t)| : t \in \mathcal{C}\} \ge b - a.$$
(3.14.6)

Now (3.14.5) and (3.14.6) give

$$d_{C(\Omega/\sim_{\Omega})}(u, C(\Omega/\sim_{\Omega}, S)) \ge b - a > \frac{b - a}{2} = \|\mathbf{d}_{u}^{S}\|_{C(\Omega/\sim_{\Omega})}$$

which in turn yields (3.14.1) and completes the example.

The following example shows that Proposition 3.12 does not hold if the hypothesis that Ω/\sim_{Ω} be totally disconnected is dropped. Indeed, we will show that, if Ω/\sim_{Ω} is not totally disconnected and X is nonzero, then $C\Sigma(\Omega, X)$ is not dense in $C(\Omega, X)$.

Example 3.15. Let Ω be a compact topological space, such that Ω/\sim_{Ω} is not totally disconnected, and let *X* be a nonzero Banach space.

We prove that $C\Sigma(\Omega, X)$ is not dense in $C(\Omega, X)$, which, by virtue of (3.9.3) and of Theorem 3.2, is equivalent to proving that $C\Sigma(\Omega/\sim_{\Omega}, X)$ is not dense in $C(\Omega/\sim_{\Omega}, X)$.

Let φ and C be the same as in Examples 3.13 and 3.14. Since $\varphi(C) = [0, 1]$ (see Example 3.13), there exist $t_0, t_1 \in C$ such that $\varphi(t_0) = 0$ and $\varphi(t_1) = 1$. Furthermore, let x_0 be a norm-one element of X, and x_0^* be a norm-one bounded linear functional on X, satisfying $\langle x_0, x_0^* \rangle = 1$.

Now let $u \in C(\Omega/\sim_{\Omega}, X)$ be defined by

$$u(t) = \varphi(t)x_0$$
 for all $t \in \Omega/\sim_{\Omega}$.

For each $v \in C\Sigma(\Omega/\sim_{\Omega}, X)$, $v(\mathcal{C})$ is a connected subset of $v(\Omega/\sim_{\Omega})$, which is finite. Hence, $v(\mathcal{C})$ consists of a single point, that is, there exists $y_v \in X$ such that

 $v(t) = y_v$ for all $t \in \mathcal{C}$.

Then

$$\begin{split} \|u - v\|_{\mathcal{C}(\Omega/\sim_{\Omega}, X)} & \ge \max\{\|u(t) - v(t)\|_{X} : t \in \mathcal{C}\} = \max\{\|\varphi(t)x_{0} - y_{v}\|_{X} : t \in \mathcal{C}\} \\ & \ge \max\{|\langle\varphi(t)x_{0} - y_{v}, x_{0}^{*}\rangle| : t \in \mathcal{C}\} = \max\{|\varphi(t) - \langle y_{v}, x_{0}^{*}\rangle| : t \in \mathcal{C}\} \\ & \ge \max\{|\varphi(t_{0}) - \langle y_{v}, x_{0}^{*}\rangle|, |\varphi(t_{1}) - \langle y_{v}, x_{0}^{*}\rangle|\} \\ & = \max\{|\langle y_{v}, x_{0}^{*}\rangle|, |1 - \langle y_{v}, x_{0}^{*}\rangle|\} \ge \frac{|\langle y_{v}, x_{0}^{*}\rangle| + |1 - \langle y_{v}, x_{0}^{*}\rangle|}{2} \ge \frac{1}{2}. \end{split}$$

Hence $C\Sigma(\Omega/\sim_{\Omega}, X)$ is not dense in $C(\Omega/\sim_{\Omega}, X)$, and the desired result is established.

Finally, we will derive analogues of [Bur, Corollaries 3.12 and 3.13] for Banach spaces of continuous functions, as a consequence of Theorem 3.11.

As a preliminary, we observe that if Y is a closed subspace of a Banach space X and Ω is a compact topological space, then $C(\Omega, Y)$, being a Banach space, is a closed subspace of $C(\Omega, X)$.

Corollary 3.16. Let X be a Banach space, Y be a closed subspace of X and Ω be a compact topological space. Then

 $d_{C(\Omega,X)}(f, C(\Omega, Y)) = \|\pi_{C(\Omega,Y)}f\|_{C(\Omega,X)/C(\Omega,Y)} = \|\pi_Y \circ f\|_{C(\Omega,X/Y)}$ for every $f \in C(\Omega, X)$.

Proof. Since *Y* is convex, then (3.11.2) applies, giving

$$d_{C(\Omega,X)}(f, C(\Omega, Y)) = \|\mathbf{d}_f^Y\|_{C(\Omega)} \text{ for every } f \in C(\Omega, X).$$

Now the desired result follows from Proposition 3.5 and from (2.3). \Box

Notice that Corollary 3.16 is also clearly a consequence of [Buc, Theorem 2] or—for a Hausdorff space Ω —of [FC, Lemma 2].

The following result can be proved proceeding as in [Bur, Corollary 3.13] (by replacing an appeal to density of the countably valued elements of $L_p(\mu, X)$ with an appeal to density of $\Pi(\Omega, X)$ in $C(\Omega, X)$). For the reader's convenience, we will provide an explicit proof for it.

Corollary 3.17. Let X be a Banach space, Y be a closed subspace of X and Ω be a compact topological space. Then:

(3.17.1) the linear map

$$\Gamma_Y^{\Omega}: C(\Omega, X) \ni f \longmapsto \pi_Y \circ f \in C(\Omega, X/Y)$$

is bounded and onto;

- (3.17.2) the kernel of Γ_Y^{Ω} coincides with $C(\Omega, Y)$;
- (3.17.3) the linear map

$$\varDelta_Y^{\Omega}: C(\Omega, X)/C(\Omega, Y) \ni f + C(\Omega, Y) \longmapsto \pi_Y \circ f \in C(\Omega, X/Y)$$

(induced by Γ_{Y}^{Ω} via the first homomorphism theorem) is isometric and onto; hence, the Banach spaces $C(\Omega, X)/C(\Omega, Y)$ and $C(\Omega, X/Y)$ are isometrically isomorphic.

Proof. From Proposition 3.5 we derive that Γ_Y^{Ω} is well defined and bounded. Furthermore, (3.17.2) follows from Corollary 3.16. Then Δ_Y^{Ω} is well defined and

$$\Delta_Y^{\Omega} (C(\Omega, X) / C(\Omega, Y)) = \Gamma_Y^{\Omega} (C(\Omega, X)).$$
(3.17.4)

From Corollary 3.16 it also follows that Δ_Y^{Ω} is an isometry, and consequently has closed range. Then Γ_Y^{Ω} has closed range by (3.17.4). Now we prove that Γ_Y^{Ω} is onto. Let $u \in \Pi(\Omega, X/Y)$. Then there exist $n \in \mathbb{Z}_+, \varphi_1, \ldots, \varphi_n \in C(\Omega)$ and $\xi_1, \ldots, \xi_n \in C(\Omega)$

X/Y such that

$$u(t) = \sum_{k=1}^{n} \varphi_k(t) \,\xi_k \quad \text{for all } t \in \Omega.$$

For each k = 1, ..., n, let $x_k \in X$ be such that $\pi_Y x_k = \xi_k$. Now let $f : \Omega \to X$ be the continuous function defined by

$$f(t) = \sum_{k=1}^{n} \varphi_k(t) x_k$$
 for all $t \in \Omega$.

Then

$$(\Gamma_Y^{\Omega} f)(t) = (\pi_Y \circ f)(t) = \pi_Y f(t) = \sum_{k=1}^n \varphi_k(t) \pi_Y x_k = \sum_{k=1}^n \varphi_k(t) \xi_k = u(t)$$

for all $t \in \Omega$.

which gives $\Gamma_Y^{\Omega} f = u$.

We have thus proved that

$$\Gamma_Y^{\Omega}(C(\Omega, X)) \supset \Pi(\Omega, X/Y). \tag{3.17.5}$$

Since $\Gamma_Y^{\Omega}(C(\Omega, X))$ is closed, and $\Pi(\Omega, X/Y)$ is dense in $C(\Omega, X/Y)$ by Theorem 2.10, from (3.17.5) we conclude that Γ_Y^{Ω} is onto, which completes the proof of (3.17.1). Now from (3.17.4) it follows that Δ_Y^{Ω} is also onto, which completes the proof of (3.17.3) and establishes the corollary.

We remark that Corollary 3.17 (and consequently Corollary 3.16) can also be obtained via an injective tensor product: indeed, it can, for instance, be derived from [DF, 4.2.(2), 4.4 (applied to the metric surjection π_Y) and 2.7, Property (4)].

Corollary 3.18. Let Ω be a compact topological space, X be a Banach space and S be a nonempty subset of X. If at least one of conditions (3.11.2.1) and (3.11.2.2) is satisfied, then:

(3.18.1) $d_{C(\Omega,X)}(f, C(\Omega, \overline{S})) = d_{C(\Omega,X)}(f, C(\Omega, S))$ for every $f \in C(\Omega, X)$; (3.18.2) $C(\Omega, \overline{S}) = \overline{C(\Omega, S)}$.

Proof. Since $d_f^{\overline{S}} = d_f^S$ by (2.1) (and \overline{S} is convex if *S* is convex), (3.18.1) follows from Theorem 3.11. Since $C(\Omega, \overline{S})$ is clearly a closed subset of $C(\Omega, X)$, (3.18.1) in turn yields (3.18.2). \Box

Notice that if none of conditions (3.11.2.1) and (3.11.2.2) is satisfied, then both the inequality $d_{C(\Omega,X)}(f, C(\Omega, \overline{S})) \leq d_{C(\Omega,X)}(f, C(\Omega, S))$ and the inclusion $\overline{C(\Omega, S)} \subset C(\Omega, \overline{S})$ may be strict, as the elementary example mentioned in the Introduction shows.

References

- [Buc] R.C. Buck, Approximation properties of vector valued functions, Pacific J. Math. 53 (1974) 85–94.
- [Bur] L. Burlando, Computing the distance to the functions with range in a given set in Lebesgue spaces of vector-valued functions, to appear in Numer. Funct. Anal. Optim.
- [DF] A. Defant, K. Floret, Tensor Norms and Operator Ideals, North-Holland Mathematics Studies, vol. 176, North-Holland, Amsterdam, 1993.
- [DS] N. Dunford, J.T. Schwartz, Linear Operators, Part I: General Theory, Interscience Publishers, 1958.
- [FC] C. Franchetti, E.W. Cheney, Best approximation problems for multivariate functions, Boll. Un. Mat. Ital. B (5) 18 (1981) 1003–1015.
- [GJ] L. Gillman, M. Jerison, Rings of Continuous Functions, D. Van Nostrand, 1960.
- [HY] J.G. Hocking, G.S. Young, Topology, Addison-Wesley, Reading, MA, 1961.
- [JMN] A. Jimenez-Vargas, J.F. Mena-Jurado, J.C. Navarro-Pascual, Approximation by extreme functions, J. Approx. Theory 97 (1999) 15–30.
- [L] W.A. Light, Proximinality in $L_p(S, Y)$, Rocky Mountain J. Math. 19 (1989) 251–259.
- [LC] W.A. Light, E.W. Cheney, Approximation Theory in Tensor Product Spaces, Lecture Notes in Mathematics, vol. 1169, Springer, Berlin, 1985.
- [LGC] W.A. Light, M. von Golitschek, E.W. Cheney, Approximation with monotone norms in tensor product spaces, J. Approx. Theory 68 (1992) 183–205.
- [R] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1970.
- [S] J. Schmets, Spaces of Vector-Valued Continuous Functions, Lecture Notes in Mathematics, vol. 1003, Springer, Berlin, 1983.